精英家教网 > 高中数学 > 题目详情
17.已知α,β∈R,则“α>β”是“α-β>sinα-sinβ”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.即不充分也不必要条件

分析 令f(x)=x-sinx,x∈R.利用导数研究其单调性即可得出.

解答 解:令f(x)=x-sinx,x∈R.
f′(x)=1-cosx≥0,可知:函数f(x)在R上单调递增.
∴α>β?f(α)>f(β)?α-β>sinα-sinβ.
∴“α>β”是“α-β>sinα-sinβ”的充要条件.
故选:C.

点评 本题考查了利用导数研究函数的单调性、简易逻辑的判定方法、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列函数中满足在(-∞,0)上单调递减的偶函数是(  )
A.$y={({\frac{1}{2}})^{|x|}}$B.y=|log2(-x)|C.$y={x^{\frac{2}{3}}}$D.y=sin|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x≤0}\\{2{x}^{2}-lnx,x>0}\end{array}\right.$,若函数y=f(x)-a恰有一个零点,则a的取值范围是[0,$\frac{1}{2}$-ln$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的导函数为f′(x),对?x∈R,f′(x)>f(x)都有成立,若f(1)=e,则不等式f(x)>ex的解是(  )
A.x>ln4B.0<x<ln4C.x>1D.0<x<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-4x+a+3:
(1)若函数y=f(x)在[-1,1]上存在零点,求实数a的取值范围;
(2)设函数g(x)=x+b,当a=3时,若对任意的x1∈[1,4],总存在x2∈[5,8],使得g(x1)=f(x2),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在等差数列{an}中,a1=1,前5项之和等于15.
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,记数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy,直线l的参数方程是$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.$(t为参数).在以O为极点,x轴正半轴为极轴建立极坐标系中,曲线C:ρ=4sinθ.
(1)当m=-1,α=30°时,判断直线l与曲线C的位置关系;
(2)当m=1时,若直线与曲l线C相交于A,B两点,设P(1,0),且||PA|-|PB||=1,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a∈R,直线l:x+ay+a-2=0,圆M:(x-1)2+(y-1)2=1,则“a=0”是“直线l与圆M相切”的(  )
A.充分不必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在区间[-1,1]上任取两数a、b,则使关于x的二次方程${x^2}+2\sqrt{{a^2}+{b^2}}x+1=0$有实数根的概率为$1-\frac{π}{4}$.

查看答案和解析>>

同步练习册答案