精英家教网 > 高中数学 > 题目详情
17.已知向量$\vec a=({1,1})$,$\vec b=(3,m)$,$\overrightarrow a$∥($\overrightarrow a$+$\vec b$),则m=3.

分析 利用向量共线定理即可得出.

解答 解:$\overrightarrow{a}+\overrightarrow{b}$=(4,1+m),
∵$\overrightarrow a$∥($\overrightarrow a$+$\vec b$),
∴1+m=4,解得m=3.
故答案为:3.

点评 本题考查了向量的坐标运算性质、向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.△ABC的三个顶点都在球O的球面上,若∠BAC=90°,AB=AC=2,若球O的表面积为12π,则球心O到平面ABC的距离等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知四面体ABCD的顶点都在同一个球的球面上,BC=$\sqrt{3}$,BD=4,且满足BC⊥BD,AC⊥BC,AD⊥BD.若该三棱锥的体积为$\frac{{4\sqrt{3}}}{3}$,则该球的球面面积为23π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的焦点到渐近线的距离为$\frac{1}{2}a$,则C的渐近线方程为(  )
A.$y=±\frac{1}{4}x$B.$y=±\frac{1}{3}x$C.$y=±\frac{1}{2}x$D.y=±x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在多面体ABCDE中,△BCD是边长为2的正三角形,AE∥DB,AE⊥DE,2AE=BD,DE=1,面ABDE⊥面BCD,F是CE的中点.
(Ⅰ)求证:BF⊥CD;
(Ⅱ)求二面角C-BF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{x^2}{2}-\frac{y^2}{a^2}=1$过点(2,-1),则该双曲线的渐近线方程为(  )
A.$y=±\frac{{\sqrt{2}}}{2}x$B.$y=±\sqrt{2}x$C.y=±xD.$y=±\frac{{\sqrt{5}}}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC的外心为O,|AB|=2,|AC|=4,M是BC中点,则$\overrightarrow{AO}•\overrightarrow{AM}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在等比数列{an}中,a1=3,2a1+a2=12,则a4=24.

查看答案和解析>>

同步练习册答案