精英家教网 > 高中数学 > 题目详情
11.设全集U=R,集合A={x|y=lgx},B={x|x2-3x>4},则A∩(∁UB)=(  )
A.{x|0≤x≤4}B.{x|-1≤x≤4}C.{x|-1≤x≤0}D.{x|0<x≤4}

分析 求出集合A,B的等价条件,结合集合的基本运算进行求解即可.

解答 解:A={x|y=lgx}={x|x>0},B={x|x2-3x>4}={x|x2-3x-4>0}={x|x>4或x<-1},
则∁UB={x|-1≤x≤4},
则A∩(∁UB)={x|0<x≤4},
故选:D

点评 本题主要考查集合的基本运算,根据条件求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求下列直线或圆的方程
(1)过点(2,1)且与直线x+3y+4=0垂直的直线方程;
(2)以线段AB:x+y-2=0(0≤x≤2)为直径的圆的标准方程;
(3)圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx(x>0).
(Ⅰ)求证:f(x)≥1-$\frac{1}{x}$;
(Ⅱ)设g(x)=x2f(x),且关于x的方程x2f(x)=m有两个不等的实根x1,x2(x1<x2).
(i)求实数m的取值范围;
(ii)求证:x1x22<${e}^{-\frac{e}{2}}$.
(参考数据:e=2.718,$\frac{1639e}{4639}$≈0.960,$\sqrt{9{e}^{2}-24e}$≈1.124,$\frac{10}{13}$≈0.769,ln2≈0.693,ln2.6≈0.956,ln2.639≈0.970.注:不同的方法可能会选取不同的数据)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}中,a1=3,对一切n∈N*,有an>0且an+1=$\frac{{{a}_{n}}^{2}}{2({a}_{n}-1)}$.
(1)求证:an>2且an+1<an
(2)求证:a1+a2+a3+…+an<2(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=x-\frac{1}{x^m}$,且$f(2)=\frac{3}{2}$.
(1)求f(x)的解析式;
(2)证明函数f(x)在区间(0,+∞)上是增函数;
(3)当x∈[-5,-3]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=x+2y的最大值与最小值的差为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x2-x-2<0},$B=\left\{{x|{{log}_4}x<\frac{1}{2}}\right\}$,则(  )
A.A∩B=∅B.UA∪B=RC.A∩B=BD.A∪B=B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为${S_n}=2{n^2}-1$,数列{bn}的前n项和为Qn=2bn-2.
(1)求数列{an}和{bn}的通项公式;
(2)设${c_n}=\frac{a_n}{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知a>0,b>0,$\frac{1}{b}$-$\frac{1}{a}$>1.求证:$\sqrt{1+a}$>$\frac{1}{\sqrt{1-b}}$.
(2)已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1.求证:a,b,c,d中至少有一个是负数.

查看答案和解析>>

同步练习册答案