精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足a1=1,an+1=1﹣ ,其中n∈N*
(Ⅰ)设bn= ,求证:数列{bn}是等差数列,并求出{an}的通项公式an
(Ⅱ)设Cn= ,数列{CnCn+2}的前n项和为Tn , 是否存在正整数m,使得Tn 对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.

【答案】证明:(Ⅰ)∵bn+1﹣bn= = = =2,
∴数列{bn}是公差为2的等差数列,
=2,∴bn=2+(n﹣1)×2=2n.
∴2n= ,解得
(Ⅱ)解:由(Ⅰ)可得
∴cncn+2= =
∴数列{CnCn+2}的前n项和为Tn= +
=2 <3.
要使得Tn 对于n∈N*恒成立,只要 ,即
解得m≥3或m≤﹣4,
而m>0,故最小值为3
【解析】(Ⅰ)利用递推公式即可得出bn+1﹣bn为一个常数,从而证明数列{bn}是等差数列,再利用等差数列的通项公式即可得到bn , 进而得到an;(Ⅱ)利用(Ⅰ)的结论,利用“裂项求和”即可得到Tn , 要使得Tn 对于n∈N*恒成立,只要 ,即 ,解出即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某次数学考试的成绩服从正态分布N(116,82),则成绩在140分以上的考生所占的百分比为( ) (附:正态总体在三个特殊区间内取值的概率值①P(μ﹣σ<X≤μ+σ)=0.6826;②P(μ﹣2σ<X≤μ+2σ)=0.9544;③P(μ﹣3σ<X≤μ+3σ)=0.9974)
A.0.3%
B.0.23%
C.1.3%
D.0.13%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是公差为正数的等差数列,a2和 a5是方程x2﹣12x+27=0 的两实数根,数列{bn}满足3n1bn=nan+1﹣(n﹣1)an
(Ⅰ)求an与bn
(Ⅱ)设Tn为数列{bn}的前n项和,求Tn , 并求Tn<7 时n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在学校组织的“环保知识”竞赛活动中,甲、乙两班6名参赛选手的成绩的茎叶图受到不同程度的污损,如图:
(Ⅰ)求乙班总分超过甲班的概率;
(Ⅱ)若甲班污损的学生成绩是90分,乙班污损的学生成绩为97分,现从甲乙两班所有选手成绩中各随机抽取2个,记抽取到成绩高于90分的选手的总人数为ξ,求ξ的分布列及数学成绩.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,F是双曲线 的左焦点,A,B分别为Γ的左、右顶点,P为Γ上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E,直线 BM与y轴交于点N,若|OE|=2|ON|,则 Γ的离心率为(
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 C1 =1( a>0,b>0),圆 C2:x2+y2﹣2ax+ a2=0,若双曲线C1 的一条渐近线与圆 C2 有两个不同的交点,则双曲线 C1 的离心率的范围是(
A.(1,
B.( ,+∞)
C.(1,2)
D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆Γ: +y2=1(a>1)的左焦点为F1 , 右顶点为A1 , 上顶点为B1 , 过F1 , A1 , B1三点的圆P的圆心坐标为( ).
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l:y=kx+m(k,m为常数,k≠0)与椭圆Γ交于不同的两点M和N.
(i)当直线l过E(1,0),且 +2 = 时,求直线l的方程;
(ii)当坐标原点O到直线l的距离为 时,求△MON面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且a1=2,nan+1=2(n+1)an
(1)记bn= ,求数列{bn}的通项bn
(2)求通项an及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 上的动点P与其顶点 不重合. (Ⅰ)求证:直线PA与PB的斜率乘积为定值;
(Ⅱ)设点M,N在椭圆C上,O为坐标原点,当OM∥PA,ON∥PB时,求△OMN的面积.

查看答案和解析>>

同步练习册答案