精英家教网 > 高中数学 > 题目详情
4.设奇函数f(x)在区间[-7,-3]上是减函数且最小值为-6,函数g(x)=$\frac{ax+1}{x+2}$,其中a<$\frac{1}{2}$.
(1)判断函数g(x)在(-2,+∞)上的单调性,并用定义法证明;
(2)求函数F(x)=f(x)+g(x)在区间[3,7]上的最大值.

分析 (1)根据函数单调性的定义证明即可;(2)分别求出f(x)和g(x)的最大值,求出F(x)的最大值即可.

解答 解:(1)函数g(x)在(-2,+∞)上是减函数,
证明如下:
设-2<x1<x2
∵g(x)=a+$\frac{1-2a}{x+2}$,
∴g(x2)-g(x1
=(a+$\frac{1-2a}{{x}_{2}+2}$ )-(a+$\frac{1-2a}{{x}_{1}+2}$)
=(1-2a)•$\frac{{{x}_{1}-x}_{2}}{{(x}_{2}+2){(x}_{1}+2)}$,
∵-2<x1<x2
∴$\frac{{{x}_{1}-x}_{2}}{{(x}_{2}+2){(x}_{1}+2)}$<0,
∵a<$\frac{1}{2}$,∴g(x2)<g(x1),
∴a<$\frac{1}{2}$时,g(x)在(-2,+∞)递减;
f(x)min=f(-3)=-6,且f(x)是奇函数,
∴f(3)=6,即f(x)在区间[3,7]上的最大值是6,
由(1)得:g(x)在[3,7]上也是减函数,
∴F(x)max=f(3)+g(3)=6+$\frac{3a+1}{3+2}$=$\frac{3a+31}{5}$.

点评 本题考查了函数单调性的证明,考查函数的单调性、最值问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=2sin({ωx+φ})+1({ω>0,|φ|<\frac{π}{2}}),f(α)=-1,f(β)=1$,若|α-β|的最小值为$\frac{3π}{4}$,且f(x)的图象关于点$({\frac{π}{4},1})$对称,则函数f(x)的单调递增区间是(  )
A.$[{-\frac{π}{2}+2kπ,π+2kπ}],k∈Z$B.$[{-\frac{π}{2}+3kπ,π+3kπ}],k∈Z$
C.$[{π+2kπ,\frac{5π}{2}+2kπ}],k∈Z$D.$[{π+3kπ,\frac{5π}{2}+3kπ}],k∈Z$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在△ABC中,N、P分别是AC、BN的中点,设$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,则$\overrightarrow{AP}$=(  )
A.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$B.-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$C.-$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow{b}$D.$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.i为虚数单位,若(1+i)$\overline{z}$=(1-i)2,则|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直线l过点P(-1,2)且与以点M(-3,-2)、N(4,0)为端点的线段恒相交,则l的斜率取值范围是$({-∞,-\frac{2}{5}}]∪[{2,+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若cos($\frac{π}{4}$+θ)cos($\frac{π}{4}$-θ)=$\frac{1}{4}$,求sin4θ+cos4θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(ωx+φ)(ω>,|φ|<$\frac{π}{2}$),其图象相邻两个对称中心的距离为$\frac{π}{2}$,且f(x+$\frac{π}{6}$)=f(-x),下列判断正确的是 (  )
A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点($\frac{7π}{12}$,0)对称
C.函数f(x)在[$\frac{3π}{4}$,π]上单调递增
D.函数f(x)的图象关于直线x=-$\frac{7π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆的方程是x2+y2=1,则经过圆上一点M($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)的切线方程是x+y-$\sqrt{2}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点P是椭圆上任意一点,F1,F2分别是椭圆的左右焦点,∠F1PF2的最大值是60°,则椭圆的离心率的值是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案