精英家教网 > 高中数学 > 题目详情

【题目】袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是(
A.至少有一个白球;都是白球
B.至少有一个白球;至少有一个红球
C.恰有一个白球;一个白球一个黑球
D.至少有一个白球;红、黑球各一个

【答案】D
【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:
2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,
所以至少有一个白球,至多有一个白球不互斥;
至少有一个白球,至少有一个红球不互斥;
至少有一个白球,没有白球互斥且对立;
至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,
故选:D
写出从3个红球,2个白球,1个黑球中任取2个球的取法情况,然后逐一核对四个选项即可得到答案

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是(
A.60
B.48
C.42
D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在R上满足f(x)=2f(2﹣x)﹣x2+8x﹣8,则曲线y=f(x)在点(1,f(1))处的切线方程是(  )
A.y=﹣2x+3
B.y=x
C.y=3x﹣2
D.y=2x﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班一天上午安排语、数、外、体四门课,其中体育课不能排在第一、第四节,则不同排法的种数为(
A.24
B.22
C.20
D.12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2+2xf′(1),则f′(0)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=2|x+3|在(﹣∞,t)上是单调增函数,则实数t的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为﹣1.
(1)求a的值及函数f(x)的极值;
(2)证明:当x>0时,x2<ex

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)的图象的对称轴为x=﹣4,且当x≥﹣4时,f(x)=2x﹣3,若函数f(x)在区间(k﹣1,k)(k∈Z)上有零点,则k的值为(  )
A.﹣8或﹣7
B.﹣8或2
C.2或﹣9
D.﹣2或﹣8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二项式(1﹣3x)9的展开式中所有项的系数和为

查看答案和解析>>

同步练习册答案