精英家教网 > 高中数学 > 题目详情
9.如图所示,已知AB为圆O的直径,C,D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求证:AC是∠DAB的平分线;
(Ⅱ)求证:OF∥AG.

分析 (I)要证明C是劣弧BD的中点,即证明弧BC与弧CD相等,即证明∠CAB=∠DAC,根据已知中CF=FG,AB是圆O的直径,CE⊥AB于E,我们易根据同角的余角相等,得到结论.
(II)由已知及(I)的结论,我们易证明△BFC及△GFC均为等腰三角形,即CF=BF,CF=GF,进而得到结论.

解答 解:(I)∵CF=FG
∴∠CGF=∠FCG
∴AB圆O的直径
∴∠ACB=∠ADB=90°
∵CE⊥AB
∴∠CEA=90°
∵∠CBA=90°-∠CAB,∠ACE=90°-∠CAB
∴∠CBA=∠ACE
∵∠CGF=∠DGA,
∴∠DGA=∠ABC
∴∴∠CAB=∠DAC
∴C为劣弧BD的中点,
∴AC是∠DAB的平分线;
(II)∵∠GBC=90°-∠CGB,∠FCB=90°-∠GCF
∴∠GBC=∠FCB
∴CF=FB
同理可证:CF=GF
∴BF=FG,
∵OA=OB,
∴OF∥AG.

点评 本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据AB是圆O的直径,CE⊥AB于E,找出要证明相等的角所在的直角三角形,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设[x]表示不超过x的最大整数,如[1]=1,[0.5]=0,已知函数f(x)=$\frac{[x]}{x}$-k(x>0),若方程f(x)=0有且仅有3个实根,则实数k的取值范围是(  )
A.$({\frac{1}{2},\frac{2}{3}}]$B.$({\frac{2}{3},\frac{3}{4}}]$C.$({\frac{3}{4},\frac{4}{5}}]$D.$({\frac{4}{5},\frac{5}{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\sqrt{x+2}$-$\sqrt{1-x}$的值域为[-$\sqrt{3}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知,二面角α-l-β的平面角为120°,二面角γ-m-Φ中,γ⊥α,Φ⊥β,则二面角γ-m-Φ的平面角大小为(  )
A.60°B.120°C.60°或120°D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在四棱锥A-BCDE中,AE⊥平面BCDE,△BCE为正三角形,BD和CE的交点F,恰好平分CE,AE=BE=2,∠CDE=120°,AC=$\frac{\sqrt{2}}{2}$.
(1)证明:平面ABD⊥平面AEC;
(2)求二面角B-CA-E的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知某正三棱锥的三视图如图所示,则该三棱锥的表面积为(  )
A.9$\sqrt{3}$B.9$\sqrt{2}$+$\frac{9\sqrt{3}}{4}$C.12$\sqrt{2}$D.12$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,以△ABC的BC边为直径的半圆交AB于点D,交AC于点E,EF⊥BC于F,BF:FC=5:1,AB=8,AE=2,则AD长为(  )
A.$\frac{{1+\sqrt{21}}}{2}$B.$\frac{{1+\sqrt{3}}}{2}$C.$\frac{{1+\sqrt{2}}}{2}$D.$\frac{43}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三角形ABC中,∠ACB=90°,CD⊥AB于D,以CD为直径的圆分别交AC、BC于E、F.
(1)求证:S四边形CEDF=BF•AE;
(2)求证:$\frac{BF}{AE}=\frac{{B{C^3}}}{{A{C^3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数y=f(x)(x∈R)导函数为f′(x),f(0)=2,且f(x)+f′(x)>1,则不等式exf(x)>ex+1的解集为(  )
A.{x|x>0}B.{x|x<0}C.{x|x<-1或0<x<1}D.{x|x<-1或x>1}

查看答案和解析>>

同步练习册答案