分析 (1)当a=0时,f(x)=2lnx+$\frac{1}{x}$,求导,令f′(x)=0,解方程,分析导数的变化情况,确定函数的极值;
(2)当a<0时,求导,对导数因式分解,比较两根的大小,确定函数f(x)单调区间;
(3)若对任意a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求函数f(x)的最大值和最小值,解不等式,可求实数m的取值范围.
解答 解:(1)依题意知f(x)的定义域为(0,+∞),
当a=0时,f(x)=2lnx+$\frac{1}{x}$,f′(x)=$\frac{2x-1}{{x}^{2}}$,
令f′(x)=0,解得x=$\frac{1}{2}$,
当0<x<$\frac{1}{2}$时,f′(x)<0;
当x≥$\frac{1}{2}$时,f′(x)>0
又∵f($\frac{1}{2}$)=2ln$\frac{1}{2}$+2=2-2ln2
∴f(x)的极小值为2-2ln2,无极大值.
(2)f′(x)=$\frac{2-a}{x}$-$\frac{1}{{x}^{2}}$+2a=$\frac{2{ax}^{2}+(2-a)x-1}{{x}^{2}}$,
当a<-2时,-$\frac{1}{a}$<$\frac{1}{2}$,
令f′(x)<0 得 0<x<-$\frac{1}{a}$或x>$\frac{1}{2}$,
令f′(x)>0 得-$\frac{1}{a}$<x<$\frac{1}{2}$;
当-2<a<0时,得-$\frac{1}{a}$>$\frac{1}{2}$,
令f′(x)<0 得 0<x<$\frac{1}{2}$或x>-$\frac{1}{a}$,
令f′(x)>0 得$\frac{1}{2}$<x<-$\frac{1}{a}$;
当a=-2时,f′(x)=-$\frac{{(2x-1)}^{2}}{{x}^{2}}$≤0,
综上所述,当a<-2时f(x),的递减区间为(0,-$\frac{1}{a}$)和($\frac{1}{2}$,+∞),递增区间为(-$\frac{1}{a}$,$\frac{1}{2}$);
当a=-2时,f(x)在(0,+∞)单调递减;
当-2<a<0时,f(x)的递减区间为(0,$\frac{1}{2}$)和(-$\frac{1}{a}$,+∞),递增区间为($\frac{1}{2}$,-$\frac{1}{a}$).
(3)由(Ⅱ)可知,当a∈(-∞,-2)时,f(x)在区间[1,3]上单调递减,
当x=1时,f(x)取最大值;
当x=3时,f(x)取最小值;
|f(x1)-f(x2)|≤f(1)-f(3)=(1+2a)-[(2-a)ln3+$\frac{1}{3}$+6a]=$\frac{2}{3}$-4a+(a-2)ln3,
∵(m+ln3)a-ln3>|f(x1)-f(x2)|恒成立,
∴(m+ln3)a-2ln3>$\frac{2}{3}$-4a+(a-2)ln3
整理得ma>$\frac{2}{3}$-4a,
∵a<0,∴m<$\frac{2}{3a}$-4恒成立,
∵-3<a<-2,∴-$\frac{13}{3}$<$\frac{2}{3a}$-4<-$\frac{38}{9}$,
∴m≤-$\frac{13}{3}$.
点评 考查利用导数研究函数的极值、单调性和最值问题,在求函数的单调区间时,体现了分类讨论的思想方法;恒成立问题,转化为函数的最值问题,体现了转化的思想.属难题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com