分析 (Ⅰ)求出函数的导数,确定导函数的符号,从而求出函数的单调性;(Ⅱ)求出f′(x)递增,得到f′($\frac{1}{2}$)≈0,得到函数的单调区间,求出f(x)的最小值大于1即可.
解答 (Ⅰ)解:f(x)的定义域是(0,+∞),
f′(x)=xex(x+2)-$\frac{1}{x}$,
x≥1时,xex(x+2)≥3e,-1≤-$\frac{1}{x}$<0,
故f′(x)>0,f(x)在[1,+∞)递增;
(Ⅱ)证明:由(Ⅰ)得:
f′(x)=xex(x+2)-$\frac{1}{x}$,(x>0),
∴f″(x)=(x2+4x+2)ex+$\frac{1}{{x}^{2}}$>0,
∴f′(x)在(0,+∞)递增,
而f′($\frac{1}{2}$)=$\frac{1}{2}$×$\sqrt{e}$×$\frac{5}{2}$-2≈0,
故f(x)在(0,$\frac{1}{2}$)递减,在($\frac{1}{2}$,+∞)递增,
而f(x)>f($\frac{1}{2}$)=$\frac{1}{4}$×$\sqrt{e}$-ln$\frac{1}{2}$≈0.41225+0.6931>1,
故当x>0时,不等式f(x)>1恒成立.
点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x0)=0 | B. | f(x0)<0 | C. | f(x0)>0 | D. | f(x0)的符号不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com