精英家教网 > 高中数学 > 题目详情
7.连续抛一枚均匀的硬币3次,恰好2次正面向上的概率为$\frac{3}{8}$.

分析 根据n次独立重复实验中恰好发生k次的概率公式计算即可.

解答 解:每枚硬币正面向上的概率都等于$\frac{1}{2}$,故恰好有两枚正面向上的概率为 C32 ($\frac{1}{2}$)2($\frac{1}{2}$)=$\frac{3}{8}$
故答案为:$\frac{3}{8}$

点评 本题考查n次独立重复实验中恰好发生k次的概率,等可能事件的概率,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax4-$\frac{1}{2}{x^2}$,x∈(0,+∞),g(x)=f(x)-f′(x).
(1)若a>0,求证:
(ⅰ)f(x)在f'(x)的单调减区间上也单调递减;
(ⅱ)g(x)在(0,+∞)上恰有两个零点;
(2)若a>1,记g(x)的两个零点为x1,x2,求证:4<x1+x2<a+4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知二次函数y=f(x)的两个零点为0,1,且其图象的顶点恰好在函数y=log2x的图象上.函数f(x)在x∈[0,2]上的值域是[-1,8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{lnx}{x}$-a(a∈R)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若函数f(x)有两个零点,求a的取值范围;
(Ⅲ)设若函数f(x)有两个零点为m,n,求证:mn>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2ex-lnx.(ln2≈0.6931,$\sqrt{e}$≈1.649)
(Ⅰ)当x≥1时,判断函数f(x)的单调性;
(Ⅱ)证明:当x>0时,不等式f(x)>1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$sinα=\frac{2}{3}$,则cos(π+2α)等于(  )
A.$\frac{1}{9}$B.$-\frac{1}{9}$C.$\frac{5}{9}$D.$-\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow m=(sinx,cos(x+\frac{π}{4}))$,$\overrightarrow n=(cosx,-cos(x+\frac{π}{4}))$,且$f(x)=\overrightarrow m•\overrightarrow n$.
(1)求f(x)的单调递增区间;
(2)若函数$g(x)=f(x)-2{sin^2}x-m+\frac{3}{2}$在区间$[-\frac{π}{4},\frac{π}{4}]$上有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在△ABC中,N为线段AC上靠近A点的四等分点,若$\overrightarrow{AP}$=(m+$\frac{1}{10}$)$\overrightarrow{AB}$+$\frac{1}{10}$$\overrightarrow{BC}$,则m=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列值等于1的是(  )
A.$\int_{\;\;0}^{\;\;1}$xdxB.$\int_{\;\;0}^{\;\;1}{{e^x}$dxC.$\int_{\;\;0}^{\;\;\frac{π}{2}}$1dxD.$\int_{\;\;0}^{\;\;\frac{π}{2}}$cosxdx

查看答案和解析>>

同步练习册答案