精英家教网 > 高中数学 > 题目详情
12.已知$sinα=\frac{2}{3}$,则cos(π+2α)等于(  )
A.$\frac{1}{9}$B.$-\frac{1}{9}$C.$\frac{5}{9}$D.$-\frac{5}{9}$

分析 利用诱导公式,二倍角的余弦函数公式化简所求,结合已知即可计算得解.

解答 解:∵$sinα=\frac{2}{3}$,
∴cos(π+2α)=-cos2α=2sin2α-1=2×($\frac{2}{3}$)2-1=-$\frac{1}{9}$.
故选:B.

点评 本题主要考查了诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)>0恒成立,则称函数f(x)在区间(a,b)上为“凹函数”;已知f(x)=-$\frac{1}{12}$x${\;}^{4}+\frac{m}{6}{x}^{3}+\frac{3}{2}{x}^{2}$在(1,3)上为“凹函数”,则实数m的取值范围是(  )
A.[2,+∞)B.[$\frac{31}{9}$,5]C.(2,+∞)D.($\frac{31}{9}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,上顶点为A,短轴长为2,O为原点,直线AF与椭圆C的另一个交点为B,且△AOF的面积是△BOF的面积的3倍.
(1)求椭圆C的方程;
(2)如图,直线l:y=kx+m与椭圆C相交于P,Q两点,若在椭圆C上存在点R,使OPRQ为平行四边形,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.y=xn在x=1处切线方程为y=-4x,则n的值为(  )
A.4B.-4C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.连续抛一枚均匀的硬币3次,恰好2次正面向上的概率为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知正项等比数列{an},满足a5+a4-a3-a2=9,则a6+a7的最小值为(  )
A.9B.18C.27D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.动点P在抛物线x2=2y上,过点P作PQ垂直于x轴,垂足为Q,设$\overrightarrow{PM}=\frac{1}{2}\overrightarrow{PQ}$.
(Ⅰ)求点M的轨迹E的方程;
(Ⅱ)设点S(-4,4),过N(4,5)的直线l交轨迹E于A,B两点,设直线SA,SB的斜率分别为k1,k2,求|k1-k2|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.f(x)=sin(x+$\frac{π}{6}$)+cos(x+$\frac{π}{6}$),求f(x)的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的四个顶点构成面积为4的四边形,C的离心率为$\frac{\sqrt{3}}{2}$.
(I)求椭圆C的方程;
(Ⅱ)椭圆C的上、下顶点分别为A,B,过点T(t,2)(t≠0)的直线TA,TB分别与C相交于P,Q两点,若△TAB的面积是△TPQ的面积的λ倍,求λ的最大值.

查看答案和解析>>

同步练习册答案