精英家教网 > 高中数学 > 题目详情
1.f(x)=sin(x+$\frac{π}{6}$)+cos(x+$\frac{π}{6}$),求f(x)的增区间.

分析 根据辅助角公式将f(x)化简,再由正弦函数的单调增区间,解不等式即可得到.

解答 解:f(x)=sin(x+$\frac{π}{6}$)+cos(x+$\frac{π}{6}$),
=$\sqrt{2}$sin(x+$\frac{π}{6}$+$\frac{π}{4}$),
=$\sqrt{2}$sin(x+$\frac{5π}{12}$),
令2kπ-$\frac{π}{2}$≤x+$\frac{5π}{12}$≤2kπ+$\frac{π}{2}$,k∈Z,
则2kπ-$\frac{11}{12}π$≤x≤2kπ+$\frac{π}{12}$,k∈Z,
∴f(x)的增区间为:[2kπ-$\frac{11}{12}π$,2kπ+$\frac{π}{12}$],k∈Z.

点评 本题考查辅助角公式及正弦函数图象,要求学生熟练掌握公式和正弦函数图象,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设a>b>1,则下列不等式成立的是(  )
A.alnb>blnaB.alnb<blnaC.aeb>beaD.aeb<bea

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$sinα=\frac{2}{3}$,则cos(π+2α)等于(  )
A.$\frac{1}{9}$B.$-\frac{1}{9}$C.$\frac{5}{9}$D.$-\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex-3x+3a(e为自然对数的底数,a∈R).
(Ⅰ)求f(x)的单调区间与极值;
(Ⅱ)求证:当$a>ln\frac{3}{e}$,且x>0时,$\frac{e^x}{x}>\frac{3}{2}x+\frac{1}{x}-3a$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在△ABC中,N为线段AC上靠近A点的四等分点,若$\overrightarrow{AP}$=(m+$\frac{1}{10}$)$\overrightarrow{AB}$+$\frac{1}{10}$$\overrightarrow{BC}$,则m=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C的两个焦点是F1(-2,0),F2(2,0),且椭圆C经过点$A(0,\sqrt{5})$.
(1)求椭圆C的标准方程.
(2)若过左焦点F1且倾斜角为45°的直线l与椭圆C交于P、Q两点,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点A(3,0),点P在抛物线y2=4x上,过点P的直线与直线x=-1垂直相交于点B,|PB|=|PA|,则cos∠APB的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.-$\frac{1}{2}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知动圆过定点F(0,1),且与直线y=-1相切.
(Ⅰ)求动圆圆心的轨迹C的方程;
(Ⅱ) 过点F作直线交曲线C于A、B两点.若直线AO、BO(O是坐标原点)分别交直线l:y=x-2于M、N两点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex-x+a,g(x)=e-x+x+a2,a∈R.
(1)求函数f(x)的单调区间;
(2)若存在x∈[0,2],使得f(x)-g(x)<0成立,求a的取值范围;
(3)设x1,x2(x1≠x2)是函数f(x)的两个零点,求证x1+x2<0.

查看答案和解析>>

同步练习册答案