精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=ex-x+a,g(x)=e-x+x+a2,a∈R.
(1)求函数f(x)的单调区间;
(2)若存在x∈[0,2],使得f(x)-g(x)<0成立,求a的取值范围;
(3)设x1,x2(x1≠x2)是函数f(x)的两个零点,求证x1+x2<0.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)记F(x)=f(x)-g(x),求出函数的导数,确定函数的单调区间,求出F(x)的最小值,从而求出a的范围;
(3)作差得到函数h(x)=ex-e-x-2x(x≥0),求出h(x)的导数,从而判断结论.

解答 解:(1)f′(x)=ex-1…(1分)
令f′(x)>0,得x>0,则f(x)的单调递增区间为(0,+∞);…(2分)
令f′(x)<0,得x<0,则f(x)的单调递减区间为(-∞,0).…(3分)
(2)记F(x)=f(x)-g(x),
则F(x)=ex-e-x-2x+a-a2,F′(x)=ex+e-x-2…(4分)
∵${e^x}+{e^{-x}}-2≥2\sqrt{{e^x}×{e^{-x}}}-2=2-2=0$,
∴F′(x)≥0,
∴函数F(x)为(-∞,+∞)上的增函数,…(5分)
∴当x∈[0,2]时,F(x)的最小值为F(0)=a-a2…(6分)
∵存在x∈[0,2],使得f(x)-g(x)<0成立,
∴Fmin(x)<0…(7分)
即a-a2<0,解得a>1或a<0即为所求.…(8分)
(3)证明:由(1)可知,x=0是函数f(x)的极小值点,也是最小值点,即最小值为f(0)=a,
显然只有a<0时,函数f(x)有两个零点,设x1<x2,易知,x1<0,x2>0.…(9分)
∵f(x1)-f(-x2)=f(x2)-f(-x2
=$({{e^{x_2}}-{x_2}+a})-({{e^{-{x_2}}}+{x_2}+a})={e^{x_2}}-{e^{-{x_2}}}-2{x_2}$,…(10分)
令h(x)=ex-e-x-2x(x≥0),
由(2)可知h(x)在[0,+∞)上单调递增,…(11分)
∴h(x)≥h(0)=0,又∵x1<0<x2
∴h(x2)>0,
即${e^{x_2}}-{e^{-{x_2}}}-2{x_2}>0$…(12分)
∴f(x1)>f(-x2),又∵x1<0,-x2<0,…(13分)
且由(1)知f(x)在(-∞,0)上单调递减,
∴x1<-x2,∴x1+x2<0.…(14分)

点评 本题考查了函数的单调性问题,考查导数的应用以及函数恒成立问题,考查不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.f(x)=sin(x+$\frac{π}{6}$)+cos(x+$\frac{π}{6}$),求f(x)的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的四个顶点构成面积为4的四边形,C的离心率为$\frac{\sqrt{3}}{2}$.
(I)求椭圆C的方程;
(Ⅱ)椭圆C的上、下顶点分别为A,B,过点T(t,2)(t≠0)的直线TA,TB分别与C相交于P,Q两点,若△TAB的面积是△TPQ的面积的λ倍,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设a>0,函数f(x)=$\left\{\begin{array}{l}{3-sinax,x<\frac{1}{3}}\\{ax+lo{g}_{3}x,x≥\frac{1}{3}}\end{array}\right.$的最小值为1,则a=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列三个类比结论:
①“(ab)n=anbn”类比推理出“(a+b)n=an+bn”;
②已知直线a,b,c,若a∥b,b∥c,则a∥c.类比推理出:已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$;
③同一平面内,直线a,b,c,若a⊥b,b⊥c,则a∥c.类比推理出:空间中,已知平面α,β,γ,若α⊥β,β⊥γ,则α∥γ.
其中结论正确的有0个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知△ABC的周长为18,且顶点B(0,-4),C(0,4),则顶点A的轨迹方程为(  )
A.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{36}$=1(x≠0)B.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1(x≠0)
C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1(x≠0)D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,a=$\sqrt{3}$,b=$\sqrt{2}$,1+2cos(B+C)=0,则BC边上的高为$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知一非零向量数列{an}满足$\overrightarrow{a_1}$=(2,0),$\overrightarrow{a_n}$=(xn,yn)=$\frac{1}{2}$(xn-1-yn-1,xn-1+yn-1)(n≥2且n∈N*).给出以下结论:
①数列{|${\overrightarrow{a_n}}$|}是等差数列,
②|${\overrightarrow{a_2}}$|•|${\overrightarrow{a_6}}$|=$\frac{1}{2}$;
③设cn=2log2|${\overrightarrow{a_n}}$|,则数列{cn}的前n项和为Tn,当且仅当n=2时,Tn取得最大值;
④记向量$\overrightarrow{a_n}$与$\overrightarrow{{a_{n-1}}}$的夹角为θn(n≥2),均有θn=$\frac{π}{4}$.
其中所有正确结论的序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合A={x|0<x≤3},B={x|x2<4},则集合∁U(A∪B)等于(  )
A.(-∞,-2]B.(-∞,0]∪[2,+∞)C.(3,+∞)D.(-∞,-2]∪(3,+∞)

查看答案和解析>>

同步练习册答案