分析 (1)由椭圆的离心率公式和准线方程,结合四边形的面积,椭圆的a,b,c的关系,计算即可得到;
(2)分别求出直线PB,TC的方程,代入椭圆方程,求得交点P,Q的横坐标,再由三角形的面积公式,结合二次函数,计算即可得到最大值.
解答
解:(1)由题意得e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,
$\frac{1}{2}$•2a•2b=4,即有ab=2,
a2-b2=c2,
解得a=2,c=$\sqrt{3}$,b=1,
则椭圆方程为$\frac{{x}^{2}}{4}$+y2=1;
(2)由A(0,1),B(0,-1),T(t,2),
则直线TA:y=$\frac{1}{t}$x+1,代入椭圆方程可得,(1+$\frac{4}{{t}^{2}}$)x2+$\frac{8}{t}$x=0,
解得xP=-$\frac{8t}{4+{t}^{2}}$,
直线TB:y=$\frac{3}{t}$x-1,代入椭圆方程可得xQ=$\frac{24t}{36+{t}^{2}}$,
λ=$\frac{{S}_{△TAB}}{{S}_{△TPQ}}$=$\frac{\frac{1}{2}TA•TB•sin∠ATB}{\frac{1}{2}TP•TQ•sin∠PTQ}$=$\frac{TA•TB}{TP•TQ}$=$\frac{{x}_{T}-{x}_{A}}{{x}_{T}-{x}_{P}}$•$\frac{{x}_{T}-{x}_{B}}{{x}_{T}-xQ}$
=$\frac{t}{t+\frac{8t}{4+{t}^{2}}}$•$\frac{t}{t-\frac{24t}{36+{t}^{2}}}$=$\frac{({t}^{2}+4)({t}^{2}+36)}{({t}^{2}+12)({t}^{2}+12)}$,
令t2+12=m>12,则λ=$\frac{(m-8)(m+24)}{{m}^{2}}$=1+$\frac{16}{m}$-$\frac{192}{{m}^{2}}$=-192($\frac{1}{m}$-$\frac{1}{24}$)2+$\frac{4}{3}$≤$\frac{4}{3}$,
当且仅当m=24,即t=±2$\sqrt{3}$时,取得“=”,
所以λ的最大值为$\frac{4}{3}$.
点评 本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程和椭圆方程,求得交点,同时考查三角形的面积公式的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{9}$ | B. | $-\frac{1}{9}$ | C. | $\frac{5}{9}$ | D. | $-\frac{5}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\int_{\;\;0}^{\;\;1}$xdx | B. | $\int_{\;\;0}^{\;\;1}{{e^x}$dx | C. | $\int_{\;\;0}^{\;\;\frac{π}{2}}$1dx | D. | $\int_{\;\;0}^{\;\;\frac{π}{2}}$cosxdx |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,-7) | B. | ($\frac{1}{3}$,$\frac{2}{3}$) | C. | ($\frac{1}{2}$,$\frac{1}{2}$) | D. | (1,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{f({m}^{n})}{{m}^{n}}$ | B. | logmn•f(lognm) | C. | $\frac{f({n}^{m})}{{n}^{m}}$ | D. | lognm•f(logmn) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com