分析 (I)根据抛物线的性质可知圆心轨迹是以F为焦点,以直线y=-1为准线的抛物线;
(II)设出A,B的坐标,求出OA,OB的方程,求出M,N的坐标,设AB的斜率为k,用k表示出A,B的坐标,从而得出|MN|关于k的函数,利用基本不等式得出函数的最小值.
解答
解:( I)动圆圆心到定点F(0,1)与定直线y=-1的距离相等,
∴动圆圆心的轨迹为抛物线,其中F(0,1)为焦点,y=-1为准线,
∴动圆圆心轨迹方程为x2=4y.
(Ⅱ)设$A({x_1},\frac{{{x_1}^2}}{4}),B({x_2},\frac{{{x_2}^2}}{4})$,∴${k_{AO}}=\frac{x_1}{4},{k_{BO}}=\frac{x_2}{4}$,
∴AO的方程是:$y=\frac{x_1}{4}x$,
联立方程组$\left\{\begin{array}{l}y=\frac{x_1}{4}x\\ y=x-2\end{array}\right.∴{x_M}=\frac{8}{{4-{x_1}}}$,
同理由$\left\{\begin{array}{l}y=\frac{x_2}{4}x\\ y=x-2\end{array}\right.∴{x_N}=\frac{8}{{4-{x_2}}}$.
∴$|MN|=\sqrt{1+{1^2}}|{x_M}-{x_N}|=\sqrt{2}|\frac{8}{{4-{x_1}}}-\frac{8}{{4-{x_2}}}|=8\sqrt{2}|\frac{{{x_1}-{x_2}}}{{16-4({x_1}+{x_2})+{x_1}{x_2}}}|$
设AB方程为y=kx+1,由$\left\{\begin{array}{l}y=kx+1\\{x^2}=4y\end{array}\right.∴{x^2}-4kx-4=0∴\left\{\begin{array}{l}{x_1}+{x_2}=4k\\{x_1}{x_2}=-4\end{array}\right.$,
且$|{x_1}-{x_2}|=\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}=4\sqrt{{k^2}+1}$,
∴$|MN|=8\sqrt{2}|\frac{{4\sqrt{{k^2}+1}}}{16-16k-4}|=8\sqrt{2}\frac{{\sqrt{{k^2}+1}}}{|4k-3|}$,
设$4k-3=t≠0∴k=\frac{3+t}{4}$,
当t>0时$|MN|=8\sqrt{2}\frac{{\sqrt{25+{t^2}+6t}}}{4t}=2\sqrt{2}\sqrt{1+\frac{25}{t^2}+\frac{6}{t}}>2\sqrt{2}$,
当t<0时,$|MN|=8\sqrt{2}\frac{{\sqrt{25+{t^2}+6t}}}{4t}=2\sqrt{2}\sqrt{1+\frac{25}{t^2}+\frac{6}{t}}=2\sqrt{2}\sqrt{{{(\frac{5}{t}+\frac{3}{5})}^2}+\frac{16}{25}}≥2\sqrt{2}×\frac{4}{5}=\frac{{8\sqrt{2}}}{5}$
所以此时|MN|的最小值是$\frac{{8\sqrt{2}}}{5}$,此时$t=-\frac{25}{3}$,$k=-\frac{4}{3}$;
综上所述:|MN|的最小值是$\frac{{8\sqrt{2}}}{5}$.
点评 本题考查了抛物线的定义,抛物线的性质,直线与圆锥曲线的位置关系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 12 | C. | 24 | D. | 38 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com