精英家教网 > 高中数学 > 题目详情
15.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),经过点(1,e),其中e为椭圆的离心率,椭圆的上,下顶点与两焦点构成正方形.(1)求椭圆Γ的方程;
(2)若不经过原点的直线l与椭圆Γ相交于A,B两点,且l与x轴不垂直,OA,OB(O为坐标原点)的斜率之积为-$\frac{1}{2}$.求△AOB的面积.

分析 (1)由正方形,可得b=c,e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,将点(1,$\frac{\sqrt{2}}{2}$)代入椭圆方程,解方程可得a,b,进而得到椭圆方程;
(2)设不经过原点的直线l的方程为y=kx+t,代入椭圆方程x2+2y2=2,运用韦达定理和弦长公式、点到直线的距离公式,以及直线的斜率公式可得1+2k2=2t2,化简整理,即可得到所求三角形的面积.

解答 解:(1)椭圆的上,下顶点与两焦点构成正方形,可得b=c,
a=$\sqrt{{b}^{2}+{c}^{2}}$=$\sqrt{2}$c,
e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,
将点(1,$\frac{\sqrt{2}}{2}$)代入椭圆方程,可得$\frac{1}{{a}^{2}}$+$\frac{1}{2{b}^{2}}$=1,
解得a=$\sqrt{2}$,b=c=1,
可得椭圆方程为$\frac{{x}^{2}}{2}$+y2=1;
(2)设不经过原点的直线l的方程为y=kx+t,
代入椭圆方程x2+2y2=2,可得(1+2k2)x2+4ktx+2t2-2=0,
即有△=16k2t2-4(1+2k2)(2t2-2)>0,即为t2<1+2k2
x1+x2=-$\frac{4kt}{1+2{k}^{2}}$,x1x2=$\frac{2{t}^{2}-2}{1+2{k}^{2}}$,
又kOAkOB=-$\frac{1}{2}$,可得$\frac{{y}_{1}}{{x}_{1}}$•$\frac{{y}_{2}}{{x}_{2}}$=$\frac{(k{x}_{1}+t)(k{x}_{2}+t)}{{x}_{1}{x}_{2}}$
=k2+$\frac{kt({x}_{1}+{x}_{2})+{t}^{2}}{{x}_{1}{x}_{2}}$=k2+$\frac{-4{k}^{2}{t}^{2}+{t}^{2}(1+2{k}^{2})}{2{t}^{2}-2}$=-$\frac{1}{2}$,
化简可得1+2k2=2t2
O到AB的距离d=$\frac{|t|}{\sqrt{1+{k}^{2}}}$,
即有△AOB的面积为S=$\frac{1}{2}$d•|AB|
=$\frac{1}{2}$•$\frac{|t|}{\sqrt{1+{k}^{2}}}$•$\sqrt{1+{k}^{2}}$•$\sqrt{(\frac{-4kt}{1+2{k}^{2}})^{2}-\frac{8({t}^{2}-1)}{1+2{k}^{2}}}$
=$\frac{1}{2}$|t|•$\sqrt{\frac{8(1+2{k}^{2}-{t}^{2})}{(1+2{k}^{2})^{2}}}$=$\sqrt{2}$|t|•$\frac{|t|}{2{t}^{2}}$=$\frac{\sqrt{2}}{2}$.

点评 本题考查椭圆的方程的求法,注意运用离心率公式和点满足椭圆方程,考查三角形的面积的求法,注意运用联立直线方程和椭圆方程,运用韦达定理和弦长公式,点到直线的距离公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.巴蜀中学第七周将安排高二年级的5名学生会干部去食堂维持秩序,要求星期一到星期五每天只安排一人,每人只安排一天,其中甲同学不能安排在星期一,乙同学不能安排在星期五,丙同学不能和甲同学安排在相邻的两天,则满足要求的不同安排方法有(  )种.
A.46B.62C.72D.96

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C的两个焦点是F1(-2,0),F2(2,0),且椭圆C经过点$A(0,\sqrt{5})$.
(1)求椭圆C的标准方程.
(2)若过左焦点F1且倾斜角为45°的直线l与椭圆C交于P、Q两点,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x),g(x)分别是定义在R上的奇函数和偶函数,g(x)≠0,当x<0时,f′(x)g(x)-f(x)g′(x)>0,且f(-3)=0,则不等式$\frac{f(x)}{g(x)}$<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知动圆过定点F(0,1),且与直线y=-1相切.
(Ⅰ)求动圆圆心的轨迹C的方程;
(Ⅱ) 过点F作直线交曲线C于A、B两点.若直线AO、BO(O是坐标原点)分别交直线l:y=x-2于M、N两点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{3}+{y^2}$=1,过点M(2,0)任作一条直线与C交于不同的两点A、B.
(1)求△OAB的面积的最大值;
(2)若椭圆C的左顶点为N,直线l:x=$\frac{3}{2}$,直线NA和NB交直线l与PQ两点,设A、B、P、Q的纵坐标分别为y1、y2、y3、y4.求证:$\frac{1}{y_1}$+$\frac{1}{y_2}$=$\frac{1}{y_3}$+$\frac{1}{y_4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.抛物线y2=4x的焦点F关于直线y=2x的对称点坐标为(-$\frac{3}{5}$,$\frac{4}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=mlnx(m∈R).
(1)若函数y=f(x)+x的最小值为0,求m的值;
(2)设函数g(x)=f(x)+mx2+(m2+2)x,试求g(x)的单调区间;
(3)试给出一个实数m的值,使得函数y=f(x)与h(x)=$\frac{x-1}{2x}$(x>0)的图象有且只有一条公切线,并说明此时两函数图象有且只有一条公切线的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1外一点A(5,6),直线l方程为x=-$\frac{25}{3}$,P为椭圆上动点,点P到l的距离为d,则|PA|+$\frac{3}{5}$d的最小值是(  )
A.10B.8C.12D.9

查看答案和解析>>

同步练习册答案