精英家教网 > 高中数学 > 题目详情
5.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1外一点A(5,6),直线l方程为x=-$\frac{25}{3}$,P为椭圆上动点,点P到l的距离为d,则|PA|+$\frac{3}{5}$d的最小值是(  )
A.10B.8C.12D.9

分析 设左焦点F(-3,0),左准线为直线l,其方程为:x=-$\frac{25}{3}$.离心率e=$\frac{c}{a}$=$\frac{3}{5}$.根据椭圆第二定义可得:$\frac{|PF|}{d}$=e=$\frac{3}{5}$,于是|PA|+$\frac{3}{5}$d=|PA|+|PF|≥|AF|,即可得出.

解答 解:设左焦点F(-3,0),左准线为直线l,其方程为:x=-$\frac{25}{3}$.离心率e=$\frac{c}{a}$=$\frac{3}{5}$.
根据椭圆第二定义可得:$\frac{|PF|}{d}$=e=$\frac{3}{5}$,∴$\frac{3}{5}$d=|PF|,
∴|PA|+$\frac{3}{5}$d=|PA|+|PF|≥|AF|=$\sqrt{{8}^{2}+{6}^{2}}$=10,当且仅当三点P,A,F共线时取得等号.
∴|PA|+$\frac{3}{5}$d的最小值是10.
故选:A.

点评 本题考查了椭圆的定义标准方程及其性质、三角形三边大小关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),经过点(1,e),其中e为椭圆的离心率,椭圆的上,下顶点与两焦点构成正方形.(1)求椭圆Γ的方程;
(2)若不经过原点的直线l与椭圆Γ相交于A,B两点,且l与x轴不垂直,OA,OB(O为坐标原点)的斜率之积为-$\frac{1}{2}$.求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知△ABC的周长为18,且顶点B(0,-4),C(0,4),则顶点A的轨迹方程为(  )
A.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{36}$=1(x≠0)B.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1(x≠0)
C.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1(x≠0)D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={2,3,4},B={-1,0,3},则A∩B={3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知一非零向量数列{an}满足$\overrightarrow{a_1}$=(2,0),$\overrightarrow{a_n}$=(xn,yn)=$\frac{1}{2}$(xn-1-yn-1,xn-1+yn-1)(n≥2且n∈N*).给出以下结论:
①数列{|${\overrightarrow{a_n}}$|}是等差数列,
②|${\overrightarrow{a_2}}$|•|${\overrightarrow{a_6}}$|=$\frac{1}{2}$;
③设cn=2log2|${\overrightarrow{a_n}}$|,则数列{cn}的前n项和为Tn,当且仅当n=2时,Tn取得最大值;
④记向量$\overrightarrow{a_n}$与$\overrightarrow{{a_{n-1}}}$的夹角为θn(n≥2),均有θn=$\frac{π}{4}$.
其中所有正确结论的序号是④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆上,如果PF1的中点在y轴上,且|PF1|=$\frac{5}{3}$|PF2|,则椭圆的离心率e为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A(x1,y1),B(x2,y2)是抛物线y2=4x上相异两点,且满足x1+x2=2.
(Ⅰ)若直线AB经过点F(1,0),求|AB|的值;
(Ⅱ)若AB的中垂线交x轴于点M,M到直线AB的距离为d,且$\frac{|AB|}{d}$=$\sqrt{3}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与曲线y=$\sqrt{x-1}$相切,则 该双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P是双曲线右支上一点,满足($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{P{F}_{2}}$=0(O为坐标原点),且3|$\overrightarrow{P{F}_{1}}$|=4|$\overrightarrow{P{F}_{2}}$|,则双曲线的离心率为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.5

查看答案和解析>>

同步练习册答案