| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\sqrt{5}$ | D. | 2 |
分析 求出双曲线的渐近线方程,利用双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线与曲线相切,建立方程组,即可求得几何量之间的关系,从而可求双曲线的离心率.
解答 解:双曲线的渐近线方程为y=±$\frac{b}{a}$x,
∵双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线y=$\frac{b}{a}$x与曲线y=$\sqrt{x-1}$相切,
∴$\left\{\begin{array}{l}{y=\frac{b}{a}x}\\{{y}^{2}=x-1}\end{array}\right.$有唯一解,∴y2+$\frac{a}{b}$y+1=0有两相等的实根,
∴△=0,∴($\frac{a}{b}$)2-4=0,则$\frac{a}{b}$=2,b=$\frac{1}{2}$a,
∴c2=a2+b2=$\frac{5}{4}$a2,∴c=$\frac{\sqrt{5}}{2}$a
∴e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$.
故选:A.
点评 本题考查直线与曲线相切,考查双曲线的几何性质,正确运用双曲线的一条渐近线与曲线相切是关键利用判别式法是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 8 | C. | 12 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{8}{3}$ | C. | $\frac{7}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com