精英家教网 > 高中数学 > 题目详情
14.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与曲线y=$\sqrt{x-1}$相切,则 该双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{5}$D.2

分析 求出双曲线的渐近线方程,利用双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线与曲线相切,建立方程组,即可求得几何量之间的关系,从而可求双曲线的离心率.

解答 解:双曲线的渐近线方程为y=±$\frac{b}{a}$x,
∵双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线y=$\frac{b}{a}$x与曲线y=$\sqrt{x-1}$相切,
∴$\left\{\begin{array}{l}{y=\frac{b}{a}x}\\{{y}^{2}=x-1}\end{array}\right.$有唯一解,∴y2+$\frac{a}{b}$y+1=0有两相等的实根,
∴△=0,∴($\frac{a}{b}$)2-4=0,则$\frac{a}{b}$=2,b=$\frac{1}{2}$a,
∴c2=a2+b2=$\frac{5}{4}$a2,∴c=$\frac{\sqrt{5}}{2}$a
∴e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$.
故选:A.

点评 本题考查直线与曲线相切,考查双曲线的几何性质,正确运用双曲线的一条渐近线与曲线相切是关键利用判别式法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=mlnx(m∈R).
(1)若函数y=f(x)+x的最小值为0,求m的值;
(2)设函数g(x)=f(x)+mx2+(m2+2)x,试求g(x)的单调区间;
(3)试给出一个实数m的值,使得函数y=f(x)与h(x)=$\frac{x-1}{2x}$(x>0)的图象有且只有一条公切线,并说明此时两函数图象有且只有一条公切线的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1外一点A(5,6),直线l方程为x=-$\frac{25}{3}$,P为椭圆上动点,点P到l的距离为d,则|PA|+$\frac{3}{5}$d的最小值是(  )
A.10B.8C.12D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在边长为2的等边三角形△ABC中,点M在边AB上,且满足$\overrightarrow{BM}$=3$\overrightarrow{MA}$,则$\overrightarrow{CM}$•$\overrightarrow{CB}$=(  )
A.$\frac{5}{2}$B.$\frac{8}{3}$C.$\frac{7}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正整数a1,a2,a3,…,a18满足a1<a2<…<a18,a1+a2+a3+…+a18=2011,则a9的最大值为193.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设x、y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{2x+y≥0}\\{3x-y-a≤0}\end{array}\right.$若目标函数z=x+y的最小值为-$\frac{2}{5}$,则实数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在斜四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为2$\sqrt{3}$的菱形,且∠BAD=$\frac{π}{3}$,若∠AA1C=$\frac{π}{2}$,且A1在底面ABCD上射影为△ABD的重心G.
(1)求证:平面ACC1A1⊥平面BDD1B1
(2)求直线CC1与平面A1BC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={0,2,3},B={x|y=3x-x0},则A∩B=(  )
A.{0}B.{8,26}C.{8}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知A、B两个小孩和甲、乙、丙三个大人排队,A不排两端,3个大人有且只要两个相邻,则不同的排法种数有48.

查看答案和解析>>

同步练习册答案