分析 运用椭圆的定义和条件,可得|PF2|=$\frac{3}{4}$a,运用三角形的中位线定理,可得PF2垂直于x轴,$\frac{{b}^{2}}{a}$=$\frac{3}{4}$a,运用a,b,c的关系和离心率公式计算即可得到所求值.
解答
解:由椭圆的定义可得,|PF1|+|PF2|=2a,
由|PF1|=$\frac{5}{3}$|PF2|,可得|PF2|=$\frac{3}{4}$a,
由PF1的中点在y轴上,可得PF2垂直于x轴,
令x=c,可得y=±b$\sqrt{1-\frac{{c}^{2}}{{a}^{2}}}$=±$\frac{{b}^{2}}{a}$,
即有$\frac{{b}^{2}}{a}$=$\frac{3}{4}$a,即有b2=a2-c2=$\frac{3}{4}$a2,
即c2=$\frac{1}{4}$a2,即有e=$\frac{c}{a}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查椭圆的离心率的求法,注意运用椭圆的定义和三角形的中位线定理,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 8 | C. | 12 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{8}{3}$ | C. | $\frac{7}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com