分析 若P成立,则△>0.若q成立,不等式x+$\frac{m}{x}$-2>0在x∈[2,+∞)上恒成立,即:m>-x2+2x在x∈[2,+∞)上恒成立,利用二次函数的单调性即可得出.由¬p为真命题,p∧q为真命题,可知p假q真,即可得出.
解答 解:若P成立,则△=m2-4>0,解得m<-2或m>2;
若q成立,不等式x+$\frac{m}{x}$-2>0在x∈[2,+∞)上恒成立,
即:m>-x2+2x在x∈[2,+∞)上恒成立,
设f(x)=-x2+2x,则f(x)=-(x-1)2+1,当x=2时,f(x)max=f(2)=0,∴m>0.
∵¬p为真命题,p∧q为真命题,可知p假q真,
∴0<m≤2.
故m的取值区间为(0,2].
点评 本题考查了不等式的解法、二次函数的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x0∈(-4,-3) | B. | x0∈(-3,-2) | C. | x0∈(-2,-1) | D. | x0∈(-1,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{36}$=1(x≠0) | B. | $\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1(x≠0) | ||
| C. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1(x≠0) | D. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1(x≠0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com