| A. | -1 | B. | 0 | C. | 2 | D. | 8 |
分析 由已知数列递推式可得,数列{a2n+1}是以a2+1为首项,以2为公比的等比数列,写出等比数列的通项公式,代入已知条件求得a2的值.
解答 解:由a2n=2a2n-2+1,得a2n+1=2(a2n-2+1),
即$\frac{{a}_{2n}+1}{{a}_{2n-2}+1}=2$,
∴数列{a2n+1}是以a2+1为首项,以2为公比的等比数列,
则${a}_{16}+1=({a}_{2}+1)•{2}^{7}$,即$({a}_{2}+1)=\frac{128}{{2}^{7}}=1$,
∴a2=0.
故选:B.
点评 本题考查数列递推式,考查了等比关系的确定,训练了等比数列的通项公式,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | $\frac{8}{3}$ | C. | $\frac{7}{2}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 36 | B. | 48 | C. | 72 | D. | 112 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com