| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 5 |
分析 根据($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{P{F}_{2}}$=0得到△F1PF2是直角三角形,根据双曲线的定义结合直角三角形的勾股定理建立方程关系进行求解即可.
解答
解:设PF2的中点为A,则$\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$=2$\overrightarrow{OA}$,
若($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{P{F}_{2}}$=0
∴2$\overrightarrow{OA}$•$\overrightarrow{P{F}_{2}}$=0,即$\overrightarrow{OA}$⊥$\overrightarrow{P{F}_{2}}$,
∵OA是△F1PF2的中位线,
∴OA∥PF1,且PF1⊥PF1,
∵3|$\overrightarrow{P{F}_{1}}$|=4|$\overrightarrow{P{F}_{2}}$|,
∴|$\overrightarrow{P{F}_{1}}$|=$\frac{4}{3}$|$\overrightarrow{P{F}_{2}}$|,
∵|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=$\frac{4}{3}$|$\overrightarrow{P{F}_{2}}$|-|$\overrightarrow{P{F}_{2}}$|=2a,
即|$\overrightarrow{P{F}_{2}}$|=6a,
则∴|$\overrightarrow{P{F}_{1}}$|=$\frac{4}{3}$|$\overrightarrow{P{F}_{2}}$|=8a,
∵在直角△F1PF2中,|$\overrightarrow{P{F}_{1}}$|2+|$\overrightarrow{P{F}_{2}}$|2=|F1F2|2,
∴36a2+64a2=4c2,
即100a2=4c2,
则c=5a,
则离心率e=$\frac{c}{a}$=5,
故选:D
点评 本题主要考查双曲线离心率的计算,根据向量数量积的应用判断三角形是直角三角形是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 8 | C. | 12 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com