精英家教网 > 高中数学 > 题目详情
7.已知△ABC内角A的对边a=2,cosA=$\frac{15}{17}$,则BC边上的中线长的最大值是4.

分析 由中线长定理可得:b2+c2=2m2+2.由余弦定理可得:22=b2+c2-2bccosA,利用基本不等式的性质即可得出.

解答 解:△ABC中,由中线长定理可得:b2+c2=2m2+2.
由余弦定理可得:22=b2+c2-2bccosA≥b2+c2-$\frac{15}{17}$(b2+c2),化为:b2+c2≤34,当且仅当b=c=$\sqrt{17}$时取等号.
∴2m2+2≤34,
∴0<m≤4,
∴BC边上的中线长的最大值是4.
故答案为:4.

点评 本题考查了中线长定理、余弦定理、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知点A(x1,y1),B(x2,y2)是抛物线y2=4x上相异两点,且满足x1+x2=2.
(Ⅰ)若直线AB经过点F(1,0),求|AB|的值;
(Ⅱ)若AB的中垂线交x轴于点M,M到直线AB的距离为d,且$\frac{|AB|}{d}$=$\sqrt{3}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.点M在矩形ABCD内运动,其中AB=2,BC=1,则动点M到顶点A的距离|AM|≤1的概率为(  )
A.$\frac{1}{4}$B.$\frac{π}{8}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P是双曲线右支上一点,满足($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•$\overrightarrow{P{F}_{2}}$=0(O为坐标原点),且3|$\overrightarrow{P{F}_{1}}$|=4|$\overrightarrow{P{F}_{2}}$|,则双曲线的离心率为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:?x∈R,x2>3,则¬p为(  )
A.?x∈R,x2<3B.?x∈R,x2≤3C.?x∈R,x2<3D.?x∈R,x2≤3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=(2a+1)x+b与g(x)=x2-2(1-a)x+2在(-∞,4]上都是递减的,实数a的取值范围是(  )
A.(-∞,-3]B.(-∞,-3)C.[-3,-$\frac{1}{2}$)D.(-3,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.用0,1,2,3,4,5这6个数字,组成允许有重复数字的三位数,其中能被5整除的三位数共有60个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中tanA,tanB,tanC依次成等差数列,则B的取值范围是[$\frac{π}{3}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f′(x)为函数f(x)的导函数,且f(x)=$\frac{1}{2}$x2-f(0)x+f′(1)ex-1,若g(x)=f(x)-$\frac{1}{2}$x2+x,则方程g($\frac{{x}^{2}}{a}$-x)-x=0有且仅有一个根时,a的取值范围是(  )
A.(-∞,0)∪{1}B.(-∞,1]C.(0,1]D.[1,+∞)

查看答案和解析>>

同步练习册答案