精英家教网 > 高中数学 > 题目详情
18.点M在矩形ABCD内运动,其中AB=2,BC=1,则动点M到顶点A的距离|AM|≤1的概率为(  )
A.$\frac{1}{4}$B.$\frac{π}{8}$C.$\frac{π}{4}$D.$\frac{π}{6}$

分析 根据已知条件,求出满足条件的矩形ABCD的面积,以及动点M到顶点A的距离|AM|≤1对应的平面区域面积,代入几何概型计算公式加以计算,可得所求概率.

解答 解:矩形ABCD的面积为2×1=2.
动点M到顶点A的距离|AM|≤1的平面区域,是以A为圆心半径等于1的$\frac{1}{4}$圆,其面积为$\frac{1}{4}π$.
∴动点M到顶点A的距离|AM|≤1的概率P=$\frac{π}{8}$.
故选:B.

点评 本题给出矩形ABCD内的动点M,求|AM|≤1的概率.着重考查了正方形与扇形的面积公式、几何概型计算公式等知识点,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C1:$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1,圆C2:x2+y2=4.过椭圆C1上点P作圆C2的两条切线,切点为A,B.
(1)当点P的坐标为(-2,2)时,求直线AB的方程;
(2)当点P(x0,y0)在椭圆上运动但不与椭圆的顶点重合时,设直线AB与坐标轴围成的三角形面积为S,问S是否存在最小值?如果存在,请求出这个最小值.并求出此时点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正整数a1,a2,a3,…,a18满足a1<a2<…<a18,a1+a2+a3+…+a18=2011,则a9的最大值为193.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在斜四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为2$\sqrt{3}$的菱形,且∠BAD=$\frac{π}{3}$,若∠AA1C=$\frac{π}{2}$,且A1在底面ABCD上射影为△ABD的重心G.
(1)求证:平面ACC1A1⊥平面BDD1B1
(2)求直线CC1与平面A1BC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x,y满足不等式组$\left\{\begin{array}{l}{x-3y+2≥0}\\{x+y-6≤0}\\{y≥1}{\;}\end{array}\right.$,若目标函数z=x+ay取得最小值的最优解有无数个,则a=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={0,2,3},B={x|y=3x-x0},则A∩B=(  )
A.{0}B.{8,26}C.{8}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线y2=8x的焦点恰好是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{3}$=1的右焦点,则双曲线的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知△ABC内角A的对边a=2,cosA=$\frac{15}{17}$,则BC边上的中线长的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.执行如图的程序框图,若输入n=4,则输出的结果是(  )
A.30B.62C.126D.254

查看答案和解析>>

同步练习册答案