精英家教网 > 高中数学 > 题目详情
13.已知x,y满足不等式组$\left\{\begin{array}{l}{x-3y+2≥0}\\{x+y-6≤0}\\{y≥1}{\;}\end{array}\right.$,若目标函数z=x+ay取得最小值的最优解有无数个,则a=-3.

分析 由题设条件,目标函数z=x+ay,取得最小值的最优解有无数个知取得最优解必在边界上而不是在顶点上,故目标函数的斜率为正,最小值应在左上方边界AC上取到,即x+ay=0应与直线AC平行,进而计算可得a值.

解答 解:作出不等式组对应的平面区域
由题意,最优解应在线段AC上取到,故x+ay=0应与直线AC平行,
∵kAC=$\frac{2-1}{4-1}$=$\frac{1}{3}$,
∴-$\frac{1}{a}$=$\frac{1}{3}$,
∴a=-3,
故答案为:-3

点评 本题考查线性规划最优解的判定,作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,a=$\sqrt{3}$,b=$\sqrt{2}$,1+2cos(B+C)=0,则BC边上的高为$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,点A,B,C是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的三个顶点,D是OA的中点,P、Q是直线x=4上的两个动点.
(1)当点P的纵坐标为1时,求证:直线CD与直线BP的交点在椭圆上;
(2)设F1,F2分别是椭圆的左、右焦点,PF1⊥QF2,证明以线段PQ为直径的圆恒过定点,并求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合A={x|0<x≤3},B={x|x2<4},则集合∁U(A∪B)等于(  )
A.(-∞,-2]B.(-∞,0]∪[2,+∞)C.(3,+∞)D.(-∞,-2]∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|x2-1≤0,x∈Z},B={-2,-1,0,1,2},则A∩B子集的个数为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.点M在矩形ABCD内运动,其中AB=2,BC=1,则动点M到顶点A的距离|AM|≤1的概率为(  )
A.$\frac{1}{4}$B.$\frac{π}{8}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个棱锥的三视图如图所示,则该棱锥的所有棱长之和等于4+4$\sqrt{3}$,棱锥的体积等于

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:?x∈R,x2>3,则¬p为(  )
A.?x∈R,x2<3B.?x∈R,x2≤3C.?x∈R,x2<3D.?x∈R,x2≤3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系中,函数f(x)=(b-2)x2+2bx-1的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.
(1)求实数b的取值范围;
(2)求圆C的方程;
(3)圆C过定点(即坐标与b无关)吗?试证明你的结论.

查看答案和解析>>

同步练习册答案