8£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1£¬Ô²C2£ºx2+y2=4£®¹ýÍÖÔ²C1ÉϵãP×÷Ô²C2µÄÁ½ÌõÇÐÏߣ¬ÇеãΪA£¬B£®
£¨1£©µ±µãPµÄ×ø±êΪ£¨-2£¬2£©Ê±£¬ÇóÖ±ÏßABµÄ·½³Ì£»
£¨2£©µ±µãP£¨x0£¬y0£©ÔÚÍÖÔ²ÉÏÔ˶¯µ«²»ÓëÍÖÔ²µÄ¶¥µãÖØºÏʱ£¬ÉèÖ±ÏßABÓë×ø±êÖáΧ³ÉµÄÈý½ÇÐÎÃæ»ýΪS£¬ÎÊSÊÇ·ñ´æÔÚ×îСֵ£¿Èç¹û´æÔÚ£¬ÇëÇó³öÕâ¸ö×îСֵ£®²¢Çó³ö´ËʱµãPµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔòPA¡¢PBµÄ·½³Ì·Ö±ðΪx1x+y1y=4£¬x2x+y2y=4£¬¶øPA¡¢PB½»ÓÚP£¨-2£¬2£©£¬ÓÉ´ËÄÜÇó³öABµÄÖ±Ïß·½³Ì£»
£¨2£©ÇóµÃÖ±ÏßABµÄ·½³Ìx0x+y0y=4£¬ÇóµÃÓëx£¬yÖáµÄ½»µã£¬´Ó¶ø¿ÉµÃÈý½ÇÐεÄÃæ»ý£¬ÀûÓûù±¾²»µÈʽ¿ÉÇó×îÖµ¼°PµÄ×ø±ê£®

½â´ð ½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉOA¡ÍPA£¬¿ÉµÃÇÐÏßPA£ºy-y1=-$\frac{{x}_{1}}{{y}_{1}}$£¨x-x1£©£¬
x12+y12=4£¬
»¯¼ò¿ÉµÃx1x+y1y=4£¬
ͬÀíPBµÄ·½³Ìx2x+y2y=4£¬
¶øPA¡¢PB½»ÓÚP£¨-2£¬2£©£¬
¼´-2x1+2y1=4£¬-2x2+2y2=4£¬
ÓÉÁ½µãÈ·¶¨Ò»ÌõÖ±Ïߣ¬¿ÉµÃABµÄÖ±Ïß·½³ÌΪ£º-2x+2y=4£¬
¼´Îªx-y+4=0£»
£¨2£©ÓÉ£¨1£©¿ÉµÃÖ±ÏßABµÄ·½³ÌΪx0x+y0y=4£¬
Áîx=0£¬¿ÉµÃy=$\frac{4}{{y}_{0}}$£»Áîy=0£¬¿ÉµÃx=$\frac{4}{{x}_{0}}$£¬
ÔòÈý½ÇÐÎÃæ»ýS=$\frac{1}{2}$|$\frac{4}{{y}_{0}}$|•|$\frac{4}{{x}_{0}}$|=|$\frac{8}{{x}_{0}{y}_{0}}$|£¬
ÓÖ$\frac{1}{3\sqrt{2}}$|x0y0|=2|$\frac{{x}_{0}}{2\sqrt{3}}$•$\frac{{y}_{0}}{\sqrt{6}}$|¡Ü$\frac{{{x}_{0}}^{2}}{12}$+$\frac{{{y}_{0}}^{2}}{6}$=1£¬
¼´ÓÐ|x0y0|¡Ü3$\sqrt{2}$£¬
ÔòS¡Ý$\frac{4\sqrt{2}}{3}$£¬
µ±ÇÒ½öµ±|y0|=$\frac{\sqrt{2}}{2}$|x0|ʱ£¬ÓÖ$\frac{{{x}_{0}}^{2}}{12}$+$\frac{{{y}_{0}}^{2}}{6}$=1£¬
¼´ÓÐP£¨$\frac{\sqrt{2}}{2}$£¬$\frac{1}{2}$£©£¬»ò£¨-$\frac{\sqrt{2}}{2}$£¬$\frac{1}{2}$£©£¬»ò£¨-$\frac{\sqrt{2}}{2}$£¬-$\frac{1}{2}$£©£¬»ò£¨$\frac{\sqrt{2}}{2}$£¬$\frac{1}{2}$£©£¬
Èý½ÇÐεÄÃæ»ýSÈ¡µÃ×îСֵΪ$\frac{4\sqrt{2}}{3}$£®

µãÆÀ ±¾Ì⿼²éÖ±ÏߺÍÔ²µÄλÖùØÏµ£¬Ö÷ÒªÊÇÇÐÏß·½³ÌµÄÇ󷨣¬¿¼²éÈý½ÇÐεÄÃæ»ýµÄ×îÖµ£¬×¢ÒâÔËÓûù±¾²»µÈʽ£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÖ±Ïßl£º3x+4y+10=0£¬ÒÔC£¨2£¬1£©ÎªÔ²ÐĵÄÔ²½ØÖ±ÏßlËùµÃµÄÏÒ³¤Îª6£®
£¨1£©ÇóÔ²CµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚбÂÊΪ1µÄÖ±Ïßm£¬Ê¹µÃÒÔÖ±Ïßm±»Ô²C½ØµÃµÄÏÒ³¤ABΪֱ¾¶µÄÔ²¾­¹ýÔ­µã£¿Èô´æÔÚ£¬Ð´³öÖ±Ïß·½³Ì£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Éèa£¾0£¬º¯Êýf£¨x£©=$\left\{\begin{array}{l}{3-sinax£¬x£¼\frac{1}{3}}\\{ax+lo{g}_{3}x£¬x¡Ý\frac{1}{3}}\end{array}\right.$µÄ×îСֵΪ1£¬Ôòa=6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª¡÷ABCµÄÖܳ¤Îª18£¬ÇÒ¶¥µãB£¨0£¬-4£©£¬C£¨0£¬4£©£¬Ôò¶¥µãAµÄ¹ì¼£·½³ÌΪ£¨¡¡¡¡£©
A£®$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{36}$=1£¨x¡Ù0£©B£®$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1£¨x¡Ù0£©
C£®$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1£¨x¡Ù0£©D£®$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1£¨x¡Ù0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬a=$\sqrt{3}$£¬b=$\sqrt{2}$£¬1+2cos£¨B+C£©=0£¬ÔòBC±ßÉϵĸßΪ$\frac{\sqrt{3}+1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖª¼¯ºÏA={2£¬3£¬4}£¬B={-1£¬0£¬3}£¬ÔòA¡ÉB={3}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªÒ»·ÇÁãÏòÁ¿ÊýÁÐ{an}Âú×ã$\overrightarrow{a_1}$=£¨2£¬0£©£¬$\overrightarrow{a_n}$=£¨xn£¬yn£©=$\frac{1}{2}$£¨xn-1-yn-1£¬xn-1+yn-1£©£¨n¡Ý2ÇÒn¡ÊN*£©£®¸ø³öÒÔϽáÂÛ£º
¢ÙÊýÁÐ{|${\overrightarrow{a_n}}$|}ÊǵȲîÊýÁУ¬
¢Ú|${\overrightarrow{a_2}}$|•|${\overrightarrow{a_6}}$|=$\frac{1}{2}$£»
¢ÛÉècn=2log2|${\overrightarrow{a_n}}$|£¬ÔòÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬µ±ÇÒ½öµ±n=2ʱ£¬TnÈ¡µÃ×î´óÖµ£»
¢Ü¼ÇÏòÁ¿$\overrightarrow{a_n}$Óë$\overrightarrow{{a_{n-1}}}$µÄ¼Ð½ÇΪ¦Èn£¨n¡Ý2£©£¬¾ùÓЦÈn=$\frac{¦Ð}{4}$£®
ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊǢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇÅ×ÎïÏßy2=4xÉÏÏàÒìÁ½µã£¬ÇÒÂú×ãx1+x2=2£®
£¨¢ñ£©ÈôÖ±ÏßAB¾­¹ýµãF£¨1£¬0£©£¬Çó|AB|µÄÖµ£»
£¨¢ò£©ÈôABµÄÖд¹Ïß½»xÖáÓÚµãM£¬Mµ½Ö±ÏßABµÄ¾àÀëΪd£¬ÇÒ$\frac{|AB|}{d}$=$\sqrt{3}$£¬ÇóÖ±ÏßABµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®µãMÔÚ¾ØÐÎABCDÄÚÔ˶¯£¬ÆäÖÐAB=2£¬BC=1£¬Ôò¶¯µãMµ½¶¥µãAµÄ¾àÀë|AM|¡Ü1µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{¦Ð}{8}$C£®$\frac{¦Ð}{4}$D£®$\frac{¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸