精英家教网 > 高中数学 > 题目详情
3.设f(x),g(x)分别是定义在R上的奇函数和偶函数,g(x)≠0,当x<0时,f′(x)g(x)-f(x)g′(x)>0,且f(-3)=0,则不等式$\frac{f(x)}{g(x)}$<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

分析 由条件利用导数求得当x<0时,$\frac{f(x)}{g(x)}$是增函数,故当x>0时,$\frac{f(x)}{g(x)}$也是增函数,$\frac{f(x)}{g(x)}$的图象关于原点对称.再结合f(-3)=-f(3)=0,求得不等式的解集.

解答 解:∵当x<0时,f′(x)g(x)-f(x)g′(x)>0,
∴[$\frac{f(x)}{g(x)}$]′=$\frac{f′(x)g(x)-f(x)g′(x)}{{g}^{2}(x)}$>0,
∴当x<0时,$\frac{f(x)}{g(x)}$是增函数,故当x>0时,$\frac{f(x)}{g(x)}$也是增函数.
∵f(x),g(x)分别是定义在R上的奇函数和偶函数,
∴$\frac{f(x)}{g(x)}$为奇函数,$\frac{f(x)}{g(x)}$的图象关于原点对称,
函数$\frac{f(x)}{g(x)}$的单调性的示意图,如图所示:
∵f(-3)=0,∴f(3)=0,∴由不等式$\frac{f(x)}{g(x)}$<0,
可得x<-3 或0<x<3,
故原不等式的解集为{x|x<-3 或0<x<3 },
故选:D.

点评 本题主要考查利用导数研究函数的单调性,函数的单调性和奇偶性的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数y=x3+x-2在点P0处的切线平行于直线y=4x-4,则P0点的坐标为(  )
A.(1,0)B.(-1,-4)C.(1,0)或(-1,-4)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,圆锥SO中,AB、CD为底面圆O的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=2,P为SB的中点.(1)求证:SA∥平面PCD;
(2)求三棱锥S-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f′(x)是函数f(x),(x∈R)的导数,满足f′(x)=-f(x),且f(0)=2,设函数g(x)=f(x)-lnf3(x)的一个零点为x0,则以下正确的是(  )
A.x0∈(-4,-3)B.x0∈(-3,-2)C.x0∈(-2,-1)D.x0∈(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:3x+4y+10=0,以C(2,1)为圆心的圆截直线l所得的弦长为6.
(1)求圆C的方程;
(2)是否存在斜率为1的直线m,使得以直线m被圆C截得的弦长AB为直径的圆经过原点?若存在,写出直线方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a∈R,函数f(x)=ex-1-ax的图象与x轴相切.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当x>1时,f(x)>m(x-1)lnx,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),经过点(1,e),其中e为椭圆的离心率,椭圆的上,下顶点与两焦点构成正方形.(1)求椭圆Γ的方程;
(2)若不经过原点的直线l与椭圆Γ相交于A,B两点,且l与x轴不垂直,OA,OB(O为坐标原点)的斜率之积为-$\frac{1}{2}$.求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{3}$,则:|$\overrightarrow{a}$-2$\overrightarrow{b}$|=(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={2,3,4},B={-1,0,3},则A∩B={3}.

查看答案和解析>>

同步练习册答案