精英家教网 > 高中数学 > 题目详情
13.函数y=x3+x-2在点P0处的切线平行于直线y=4x-4,则P0点的坐标为(  )
A.(1,0)B.(-1,-4)C.(1,0)或(-1,-4)D.(1,4)

分析 求出导函数,由导数值等于4得出x=±1,分别求出函数值,发现当x=1时,点在直线上,不成立,得出选项.

解答 解:f(x)=x3+x-2,
∴f'(x)=3x2+1,
令3x2+1=4,
∴x=±1,
∴f(1)=0在直线y=4x-4上,舍去,f(-1)=-4.
故选B.

点评 考查了导函数的意义,难点是对答案的取舍.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知偶函数f(x)(x≠0)的导函数为f′(x),且满足f(1)=0,当x>0时,xf′(x)<2f(x),则使得f(x)>0成立的x的取值范围是(  )
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.对于n∈N*,将n表示为$n={a_0}•{2^k}+{a_1}•{2^{k-1}}+…+{a_{k-1}}•{2^1}+{a_k}•{2^0}$,
当i=0时,ai=1,
当1≤i≤k时,ai=0或1.
记I(n)为上述表示中a为0的个数(例如:1=1•20,4=1•22+0•21+0•20,所以I(1)=0,I(4)=2),
则(1)I(12)=2,(2)I(1)+I(2)+…+I(2048)=9228.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,椭圆C过点$M({0,\sqrt{3}})$,且△MF1F2为正三角形.
(1)求椭圆C的方程;
(2)垂直于x轴的直线与椭圆C交于A、B两点,过点P(4,0)的直线PB交椭圆C于另一点E,证明:直线AE与x轴相交于定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.点M是圆x2+y2=4上的动点,点N与点M关于点A(1,1)对称,则点N的轨迹方程是(x-2)2+(y-2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$cos(α+\frac{π}{4})=\frac{{\sqrt{2}}}{4}$,则sin2α=(  )
A.$\frac{1}{8}$B.$\frac{3}{4}$C.$-\frac{1}{8}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.巴蜀中学第七周将安排高二年级的5名学生会干部去食堂维持秩序,要求星期一到星期五每天只安排一人,每人只安排一天,其中甲同学不能安排在星期一,乙同学不能安排在星期五,丙同学不能和甲同学安排在相邻的两天,则满足要求的不同安排方法有(  )种.
A.46B.62C.72D.96

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|$\frac{1}{4}$x2+$\frac{1}{2}$ax+$\frac{1}{4}$|(a>1)
(Ⅰ)(i)求函数f(x)的单调递增区间;
     (ii)若函数g(x)=f(x)-$\frac{1}{2}$x-a恰有三个零点,求a的值;
(Ⅱ)记M(a,t)为函数f(x)在区间[t,t+2](t∈R)上的最大值,求M(a,t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f(x),g(x)分别是定义在R上的奇函数和偶函数,g(x)≠0,当x<0时,f′(x)g(x)-f(x)g′(x)>0,且f(-3)=0,则不等式$\frac{f(x)}{g(x)}$<0的解集是(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

同步练习册答案