分析 (1)根据条件可知PO∥SA,由线面平行的判定定理即可得出SA∥平面PCD;
(2)由已知可证SP⊥平面PCD,并求得OP,SP的长,代入棱锥体积公式得答案.
解答 (1)证明:连接PO;![]()
∵P、O分别为SB、AB的中点,∴PO∥SA;
∵PO?平面PCD,SA?平面PCD;
∴SA∥平面PCD;
(2)由题意,SO⊥OB,又SO=OB=2,
∴△SOB为等腰直角三角形,
∵P为SB的中点,∴OP⊥SB,
由AB⊥CD,SO⊥CD,SO∩AB=O,得CD⊥平面SOB,∴CD⊥SB.
则SB⊥面PCD,
∴${V}_{S-PCD}=\frac{1}{3}•\frac{1}{2}CD•OP•SP=\frac{1}{6}×4×\sqrt{2}×\sqrt{2}$=$\frac{4}{3}$.
点评 考查中位线的性质,线面平行、线面垂直的判定定理,考查棱锥体积的求法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 46 | B. | 62 | C. | 72 | D. | 96 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [6,10] | B. | [6,8] | C. | [8,10] | D. | [8,11] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,0)∪(3,+∞) | B. | (-3,0)∪(0,3) | C. | (-∞,-3)∪(3,+∞) | D. | (-∞,-3)∪(0,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com