精英家教网 > 高中数学 > 题目详情
19.已知椭圆的长轴长为22,短轴长为16,则椭圆上的点到椭圆中心距离的取值范围是(  )
A.[6,10]B.[6,8]C.[8,10]D.[8,11]

分析 设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意可得a=11,b=8,可得椭圆方程,设出P(m,n),代入椭圆方程,求出|OP|,由椭圆的范围可得|OP|的最值,进而得到所求范围.

解答 解:设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
可得2a=22,即a=11,
2b=16,即b=8,
则椭圆方程为$\frac{{x}^{2}}{121}$+$\frac{{y}^{2}}{64}$=1,
设椭圆的点为P(m,n),
即有$\frac{{m}^{2}}{121}$+$\frac{{n}^{2}}{64}$=1,即为n2=64(1-$\frac{{m}^{2}}{121}$),
可得|OP|=$\sqrt{{m}^{2}+{n}^{2}}$=$\sqrt{{m}^{2}+64-\frac{64}{121}{m}^{2}}$
=$\sqrt{64+\frac{57}{121}{m}^{2}}$,
由-11≤m≤11,可得m=0时,|OP|取得最小值8;
m=±11时,|OP|取得最大值11.
则椭圆上的点到椭圆中心距离的取值范围是[8,11].
故选:D.

点评 本题考查椭圆的方程和性质,主要是椭圆的范围,考查两点的距离公式和二次函数的最值求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图1点M,N分别是正方体ABCD-A1B1C1D1的棱A1D1CC1的中点,过点D,M,N做截面去截正方体得到的新几何体(体积较大部分),则该新几何体的主视图、左视图、俯视图依次为(  )
A.①④⑤B.②③⑥C.①③⑤D.②④⑥

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2sinxcosx+2cos2x(x∈R).
(1)求函数f(x)的值域;
(2)在△ABC中,角A、B、C的对边分另为a、b、c,且f(A)=2,b=2,$c=\sqrt{2}$,求△ABC的面积S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-ax.
(Ⅰ)若函数f(x)在(1,+∞)上单调递减,求实数a的取值范围;
(Ⅱ)当a=1时,函数$g(x)=f(x)+x+\frac{1}{2x}-m$有两个零点x1,x2,且x1<x2.求证:x1+x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,圆锥SO中,AB、CD为底面圆O的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=2,P为SB的中点.(1)求证:SA∥平面PCD;
(2)求三棱锥S-PCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$的短轴的长是(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f′(x)是函数f(x),(x∈R)的导数,满足f′(x)=-f(x),且f(0)=2,设函数g(x)=f(x)-lnf3(x)的一个零点为x0,则以下正确的是(  )
A.x0∈(-4,-3)B.x0∈(-3,-2)C.x0∈(-2,-1)D.x0∈(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a∈R,函数f(x)=ex-1-ax的图象与x轴相切.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当x>1时,f(x)>m(x-1)lnx,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex(x2-ax+a),a∈R.
(Ⅰ)若函数f(x)在[1,2]上存在单调增区间,求a的取值范围;
(Ⅱ)若函数p(x)=f(x)-x2在x=0处取得极小值,求a的取值范围.

查看答案和解析>>

同步练习册答案