精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=lnx-ax.
(Ⅰ)若函数f(x)在(1,+∞)上单调递减,求实数a的取值范围;
(Ⅱ)当a=1时,函数$g(x)=f(x)+x+\frac{1}{2x}-m$有两个零点x1,x2,且x1<x2.求证:x1+x2>1.

分析 (Ⅰ)求出函数的导数,根据函数的单调性,分离参数a,问题转化为:当x>1时$a>\frac{1}{x}$恒成立,解出即可;
(Ⅱ)求出个零点x1,x2,得到${x_1}+{x_2}=\frac{t-1}{2lnt}+\frac{{1-\frac{1}{t}}}{2lnt}=\frac{{t-\frac{1}{t}}}{2lnt}$.构造函数$h(t)=t-\frac{1}{t}-2lnt(0<t<1)$,根据函数的单调性证明即可.

解答 解:(I)因为f(x)=lnx-ax,则$f'(x)=\frac{1}{x}-a=\frac{1-ax}{x}$,
若函数f(x)=lnx-ax在(1,+∞)上单调递减,
则1-ax≤0在(1,+∞)上恒成立,
即当x>1时$a>\frac{1}{x}$恒成立,所以a≥1.(5分)
(II)证明:根据题意,$g(x)=lnx+\frac{1}{2x}-m(x>0)$,
因为x1,x2是函数$g(x)=lnx+\frac{1}{2x}-m$的两个零点,
所以$ln{x_1}+\frac{1}{{2{x_1}}}-m=0$,$ln{x_2}+\frac{1}{{2{x_2}}}-m=0$.
两式相减,可得$ln\frac{x_1}{x_2}=\frac{1}{{2{x_2}}}-\frac{1}{{2{x_1}}}$,(7分)
即$ln\frac{x_1}{x_2}=\frac{{{x_1}-{x_2}}}{{2{x_2}{x_1}}}$,故${x_1}{x_2}=\frac{{{x_1}-{x_2}}}{{2ln\frac{x_1}{x_2}}}$.
那么${x_1}=\frac{{\frac{x_1}{x_2}-1}}{{2ln\frac{x_1}{x_2}}}$,${x_2}=\frac{{1-\frac{x_2}{x_1}}}{{2ln\frac{x_1}{x_2}}}$.
令$t=\frac{x_1}{x_2}$,其中0<t<1,
则${x_1}+{x_2}=\frac{t-1}{2lnt}+\frac{{1-\frac{1}{t}}}{2lnt}=\frac{{t-\frac{1}{t}}}{2lnt}$.
构造函数$h(t)=t-\frac{1}{t}-2lnt(0<t<1)$,(10分)
则$h'(t)=\frac{{{{(t-1)}^2}}}{t^2}$.因为0<t<1,所以h'(t)>0恒成立,
故h(t)<h(1),即$t-\frac{1}{t}-2lnt<0$.
可知$\frac{{t-\frac{1}{t}}}{2lnt}>1$,故x1+x2>1.(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设抛物线C:y2=4x的焦点为F,过F的直线l与抛物线交于A,B两点,M为抛物线C的准线与x轴的交点,若$tan∠AMB=2\sqrt{2}$,则|AB|=(  )
A.4B.8C.$3\sqrt{2}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$cos(α+\frac{π}{4})=\frac{{\sqrt{2}}}{4}$,则sin2α=(  )
A.$\frac{1}{8}$B.$\frac{3}{4}$C.$-\frac{1}{8}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sin(ωx+$\frac{π}{3}$)+2(ω>0)的图形向右平移$\frac{π}{3}$个单位后与原图象重合,则ω的最小值是(  )
A.6B.3C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|$\frac{1}{4}$x2+$\frac{1}{2}$ax+$\frac{1}{4}$|(a>1)
(Ⅰ)(i)求函数f(x)的单调递增区间;
     (ii)若函数g(x)=f(x)-$\frac{1}{2}$x-a恰有三个零点,求a的值;
(Ⅱ)记M(a,t)为函数f(x)在区间[t,t+2](t∈R)上的最大值,求M(a,t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx+ax2+x,a∈R.
(Ⅰ)当a=1时,求函数f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调区间;
(Ⅲ)已知a<0,对于函数f(x)图象上任意不同的两点A(x1,y1),B(x2,y2),其中x2>x1,直线AB的斜率为k,记N(u,0),若$\overrightarrow{AB}=λ\overrightarrow{AN}(1≤λ≤2)$,求证f′(u)<k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆的长轴长为22,短轴长为16,则椭圆上的点到椭圆中心距离的取值范围是(  )
A.[6,10]B.[6,8]C.[8,10]D.[8,11]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax2+bx+c,当|x|≤1时,|f(x)|≤1恒成立.
(Ⅰ)若a=1,b=c,求实数b的取值范围;
(Ⅱ)若g(x)=|cx2-bx+a|,当|x|≤1时,求g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ln(x+1)+mx(m∈R).
(Ⅰ)当m≠0时,求函数f(x)的单调区间;
(Ⅱ)有这样的结论:若函数p(x)的图象是在区间[a,b]上连续不断的曲线,且在区间(a,b)内可导,则
存在x0∈(a,b),使得p′(x0)=$\frac{p(b)-p(a)}{b-a}$.已知函数f(x)在(x1,x2)上可导(其中x2>x1>-1),若
函数g(x)=$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}(x-{x_1})+f({x_1})$.
(1)证明:对任意x∈(x1,x2),都有f(x)>g(x);
(2)已知正数λ1,λ2满足λ12=1.求证:对任意的实数x1,x2,若x2>x1>-1时,都有f(λ1x12x2)>λ1f(x1)+λ2f(x2).

查看答案和解析>>

同步练习册答案