精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=lnx+ax2+x,a∈R.
(Ⅰ)当a=1时,求函数f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调区间;
(Ⅲ)已知a<0,对于函数f(x)图象上任意不同的两点A(x1,y1),B(x2,y2),其中x2>x1,直线AB的斜率为k,记N(u,0),若$\overrightarrow{AB}=λ\overrightarrow{AN}(1≤λ≤2)$,求证f′(u)<k.

分析 (Ⅰ)根据导数的几何意义即可求出切线方程,
(Ⅱ)先求出函数的导数,通过讨论a的范围,得到函数的单调区间,
(Ⅲ)要证:f′(u)<k.,只需证$\frac{λ}{{{x_2}+(λ-1)x{\;}_1}}-\frac{{ln{x_2}-ln{x_1}}}{{x{\;}_2-{x_1}}}<0$,构造函数令$g(t)=\frac{λ(t-1)}{t+λ-1}-lnt$,通过讨论函数的单调性,从而证出结论.

解答 解:(Ⅰ)当a=1时,f(x)=lnx+x2+x,
∴$f'(x)=\frac{1}{x}+2x+1$,
∴f'(1)=4
又∵f(1)=ln1+12+1=2,
∴函数f(x)的图象在点(1,f(1))处的切线方程为:y-2=4(x-1),
即4x-y-2=0.
(Ⅱ)f(x)的定义域为(0,+∞)$f'(x)=\frac{1}{x}+2ax+1=\frac{{2a{x^2}+x+1}}{x}$,
当a≥0时,f'(x)>0在(0,+∞)上恒成立,f(x)在定义域内单调递增;
当a<0时,令f'(x)=0,解得,$x=\frac{{-1±\sqrt{1-8a}}}{4a}$,
∵x>0,
∴$x=\frac{{-1-\sqrt{1-8a}}}{4a}$
则$x∈(0,\frac{{-1-\sqrt{1-8a}}}{4a})$时,f'(x)>0,f(x)单调递增;
$x∈(\frac{{-1-\sqrt{1-8a}}}{4a},+∞)$时,f'(x)<0,f(x)单调递减;
综上,a≥0时,f(x)的单调递增区间为(0,+∞);
a<0时,f(x)的单调递增区间为$(0,\frac{{-1-\sqrt{1-8a}}}{4a})$,f(x)的单调递增区间为$(\frac{{-1-\sqrt{1-8a}}}{4a},+∞)$
(Ⅲ)证明:$k=\frac{{{y_2}-{y_1}}}{{{x_2}-{x_1}}}=\frac{{ln{x_2}+a{x_2}^2+{x_2}-ln{x_1}-a{x_1}^2-{x_1}^{\;}}}{{{x_2}-{x_1}}}$=$\frac{{ln{x_2}-ln{x_1}}}{{x{\;}_2-{x_1}}}+a({x_1}+{x_2})+1$,
∵$N(u,0),A({x_1},{y_2}),B({x_2},{y_2}),\overrightarrow{AB}=λ\overrightarrow{AN}(1≤λ≤2)$,
∴x2-x1=λ(u-x1),
∴$u=\frac{{{x_2}+(λ-1){x_1}}}{λ}$,
又$f'(x)=\frac{1}{x}+2ax+1$,
∴$f'(u)=\frac{λ}{{{x_2}+(λ-1)x{\;}_1}}+2a\frac{{{x_2}+(λ-1){x_1}}}{λ}+1$,
∴$f'(u)-k=\frac{λ}{{{x_2}+(λ-1)x{\;}_1}}-\frac{{ln{x_2}-ln{x_1}}}{{x{\;}_2-{x_1}}}+\frac{a}{λ}(2-λ)({x_2}-{x_1})$,
∵a<0,x2>x1,1≤λ≤2,
∴$\frac{a}{λ}(2-λ)({x_2}-{x_1})<0$
要证:f′(u)<k.,只需证$\frac{λ}{{{x_2}+(λ-1)x{\;}_1}}-\frac{{ln{x_2}-ln{x_1}}}{{x{\;}_2-{x_1}}}<0$
即证:$\frac{{λ({x_2}-{x_1})}}{{{x_2}+(λ-1)x{\;}_1}}-(lnx_2^{\;}-ln{x_1})<0$,设$t=\frac{x_2}{x_1}>1$
令$g(t)=\frac{λ(t-1)}{t+λ-1}-lnt$,
则$g'(t)=\frac{{-{t^2}+({λ^2}-2λ+2)t-{{(λ-1)}^2}}}{{{{(t+λ-1)}^2}t}}$,
令h(t)=-t2+(λ2-2λ+2)t-(λ-1)2,t>1,1≤λ≤2
对称轴$t=\frac{{{{(λ-1)}^2}+1}}{2}≤1$.h(t)<h(1)=0,
∴g'(t)<0,
故g(t)在(1,+∞)内单调递减,则g(t)<g(1)=0,
故f′(u)<k.

点评 本题考查导数知识的运用,考查函数的单调性,考查分离参数法的运用,考查不等式的证明,构造函数,正确求导是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某社区为调查当前居民的睡眠状况,从该社区的[10,70]岁的人群中随机抽取n人进行一次日平均睡眠时间的调查.这n人中各年龄组人数的频率分布直方图如图1所示,统计各年龄组的“亚健康族”(日平均睡眠时间符合健康标准的称为“健康族”,否则称为“亚健康族”)人数及相应频率,得到统计表如表所示.
组数分组亚健康族的人数占本组的频率
第一组[10,20)1000.5
第二组[20,30)195P
第三组[30,40)1200.6
第四组[40,50)a0.4
第五组[50,60)300.3
第六组[60,70)150.3
(Ⅰ)求n、P的值.
(Ⅱ)用分层抽样的方法从年龄在[30,50)岁的“压健康族”中抽取6人参加健康睡眠体检活动,现从6人中随机选取2人担任领队,求2名领队中恰有1人年龄在[40,50)岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,A1,A2为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的长轴的左、右端点,O为坐标原点,S,Q,T为椭圆上不同于A1,A2的三点,直线QA1,QA2,OS,OT围成一个平行四边形OPQR,则|OS|2+|OT|2=(  )
A.5B.3+$\sqrt{5}$C.9D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,满足$|\overrightarrow a|=4,|\overrightarrow b|=2$,$\overrightarrow a•\overrightarrow b=0$,$(\overrightarrow c-\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$.
(1)求$|\overrightarrow a-2\overrightarrow b|$的值;
(2)求$|\overrightarrow c|$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-ax.
(Ⅰ)若函数f(x)在(1,+∞)上单调递减,求实数a的取值范围;
(Ⅱ)当a=1时,函数$g(x)=f(x)+x+\frac{1}{2x}-m$有两个零点x1,x2,且x1<x2.求证:x1+x2>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:y2=4x,经过点(4,0)的直线l交抛物线C于A,B两点,M(-4,0),O为坐标原点.
(Ⅰ)证明:kAM+kBM=0;
(Ⅱ)若直线l的斜率为k(k<0),求$\frac{k}{{k}_{AM}•{k}_{BM}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$的短轴的长是(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx,g(x)=ax2-(2a+1)x,a∈R
(1)当a=1时,求不等式f(x)•g(x)>0的解集;
(2)若a≠0,求函数F(x)=f(x)+g(x)的单调递减区间;
(3)求证:当a∈[-$\frac{3+2\sqrt{2}}{2}$,$\frac{2}{3}$]时,对于任意两个不等的实数x1,x2∈[$\frac{1}{4}$,$\frac{3}{4}$],均有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=ex(ax-1),g(x)=a(x-1),a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若有且仅有两个整数xi(i=1,2),使得f(xi)<g(xi)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案