精英家教网 > 高中数学 > 题目详情
3.如图,A1,A2为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的长轴的左、右端点,O为坐标原点,S,Q,T为椭圆上不同于A1,A2的三点,直线QA1,QA2,OS,OT围成一个平行四边形OPQR,则|OS|2+|OT|2=(  )
A.5B.3+$\sqrt{5}$C.9D.14

分析 设Q(x0,y0),则$\frac{{x}_{0}^{2}}{9}$+$\frac{{y}_{0}^{2}}{5}$=1,可得:${k}_{{A}_{2}Q}$•${k}_{{A}_{1}Q}$=-$\frac{{b}^{2}}{{a}^{2}}$.设直线OS,OT的方程分别为:y=k1x,y=k2x,则${k}_{{A}_{2}Q}$=k1,${k}_{{A}_{1}Q}$=k2.可得k1k2.直线方程与椭圆方程分别联立可得${x}_{S}^{2}$,${y}_{S}^{2}$;${x}_{T}^{2}$,${y}_{T}^{2}$.即可得出:|OS|2+|OT|2

解答 解:设Q(x0,y0),则$\frac{{x}_{0}^{2}}{9}$+$\frac{{y}_{0}^{2}}{5}$=1,∴${y}_{0}^{2}$=$\frac{5}{9}(9-{x}_{0}^{2})$.
设直线OS,OT的方程分别为:y=k1x,y=k2x,
则${k}_{{A}_{2}Q}$=k1,${k}_{{A}_{1}Q}$=k2
∵${k}_{{A}_{2}Q}$•${k}_{{A}_{1}Q}$=$\frac{{y}_{0}}{{x}_{0}+3}$$•\frac{{y}_{0}}{{x}_{0}-3}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-9}$=-$\frac{5}{9}$.
∴k1k2=-$\frac{5}{9}$.
联立$\left\{\begin{array}{l}{y={k}_{1}x}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1}\end{array}\right.$,解得${x}_{S}^{2}$=$\frac{45}{5+9{k}_{1}^{2}}$,${y}_{S}^{2}$=$\frac{45{k}_{1}^{2}}{5+9{k}_{1}^{2}}$.
同理可得:${x}_{T}^{2}$=$\frac{45}{5+9{k}_{2}^{2}}$,${y}_{T}^{2}$=$\frac{45{k}_{2}^{2}}{5+9{k}_{2}^{2}}$.
∴|OS|2+|OT|2=${x}_{S}^{2}$+${y}_{S}^{2}$+${x}_{T}^{2}$+${y}_{T}^{2}$=$\frac{45}{5+9{k}_{1}^{2}}$+$\frac{45{k}_{1}^{2}}{5+9{k}_{1}^{2}}$+$\frac{45}{5+9{k}_{2}^{2}}$+$\frac{45{k}_{2}^{2}}{5+9{k}_{2}^{2}}$
=$\frac{45(1+{k}_{1}^{2})}{5+9{k}_{1}^{2}}$+$\frac{45(1+\frac{25}{81{k}_{1}^{2}})}{5+9×\frac{25}{81{k}_{1}^{2}}}$=$\frac{70+126{k}_{1}^{2}}{5+9{k}_{1}^{2}}$=14.
故选:D.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、平行四边形的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数y=f(x)的定义域内任意的自变量x都有f($\frac{π}{2}$-x)=f($\frac{π}{2}$+x),且对任意的x∈(-$\frac{π}{2}$,$\frac{π}{2}$),都有f′(x)+f(x)tanx>0(其中f′(x)是函数f(x)的导函数),设a=f($\frac{4π}{3}$),b=f($\frac{2π}{3}$),c=$\frac{1}{2}$f(0),则a,b,c的大小关系为(  )
A.a<c<bB.c<a<bC.c<b<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率$e=\frac{{2\sqrt{5}}}{5}$,左顶点A与右焦点F的距离$AF=2+\sqrt{5}$.
(1)求椭圆C的方程;
(2)过右焦点F作斜率为k的直线l与椭圆C交于M,N两点,P(2,1)为定点,当△MNP的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,网格线上小正方形边长为1,用两个平面去截正方体,所得的几何体的三视图为粗线部分,则此几何体的体积为(  )
A.$\frac{20}{3}$B.$\frac{19}{3}$C.6D.$\frac{17}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$cos(α+\frac{π}{4})=\frac{{\sqrt{2}}}{4}$,则sin2α=(  )
A.$\frac{1}{8}$B.$\frac{3}{4}$C.$-\frac{1}{8}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.${(x+\frac{1}{x})^2}•{(1+x)^5}$展开式中x项的系数为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sin(ωx+$\frac{π}{3}$)+2(ω>0)的图形向右平移$\frac{π}{3}$个单位后与原图象重合,则ω的最小值是(  )
A.6B.3C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx+ax2+x,a∈R.
(Ⅰ)当a=1时,求函数f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调区间;
(Ⅲ)已知a<0,对于函数f(x)图象上任意不同的两点A(x1,y1),B(x2,y2),其中x2>x1,直线AB的斜率为k,记N(u,0),若$\overrightarrow{AB}=λ\overrightarrow{AN}(1≤λ≤2)$,求证f′(u)<k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知抛物线C:y2=-8x的焦点为F,直线l:x=1,点A是l上的一动点,直线AF与抛物线C的一个交点为B,若$\overrightarrow{FA}=-3\overrightarrow{FB}$,则|AB|=(  )
A.20B.16C.10D.5

查看答案和解析>>

同步练习册答案