精英家教网 > 高中数学 > 题目详情
13.已知函数y=f(x)的定义域内任意的自变量x都有f($\frac{π}{2}$-x)=f($\frac{π}{2}$+x),且对任意的x∈(-$\frac{π}{2}$,$\frac{π}{2}$),都有f′(x)+f(x)tanx>0(其中f′(x)是函数f(x)的导函数),设a=f($\frac{4π}{3}$),b=f($\frac{2π}{3}$),c=$\frac{1}{2}$f(0),则a,b,c的大小关系为(  )
A.a<c<bB.c<a<bC.c<b<aD.b<a<c

分析 求出函数的对称轴,构造函数g(x),通过求导得到g(x)的单调性,从而判断出a,b,c的大小即可.

解答 解:∵f($\frac{π}{2}$-x)=f($\frac{π}{2}$+x),
∴x=$\frac{π}{2}$是函数的对称轴,
令g(x)=$\frac{f(x)}{cosx}$,则g′(x)=$\frac{f′(x)cosx+sinxf(x)}{{cos}^{2}x}$,
∵对任意的x∈(-$\frac{π}{2}$,$\frac{π}{2}$),都有f′(x)+f(x)tanx>0,
∴对任意的x∈(-$\frac{π}{2}$,$\frac{π}{2}$),都有cosxf′(x)+sinf(x)>0,
∴对任意的x∈(-$\frac{π}{2}$,$\frac{π}{2}$),都有g′(x)>0,
∴g(x)在(-$\frac{π}{2}$,$\frac{π}{2}$)单调递增,
∴g(x)在($\frac{π}{2}$,$\frac{3π}{2}$)单调递减,
∴g($\frac{2π}{3}$)>g(0)=g(π)>g($\frac{4π}{3}$),
∴f($\frac{2π}{3}$)>f(0)=f(π)>f($\frac{4π}{3}$),
∴b>c>a,
故选:A.

点评 本题考查了函数的单调性问题,考查导数的应用,构造函数g(x)是解题的关键,本题是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在同一平面内有10个点,其中有5个点在同一直线上,其余各点没有3点共线的,一共可以连成多少条直线?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与双曲线$\frac{x^2}{16}-\frac{y^2}{9}=1$的焦点相同,且椭圆上任意一点到其两个焦点的距离之和为20,则椭圆的离心率e的值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{7}}}{10}$C.$\frac{{\sqrt{7}}}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知定义域为R的函数f(x)满足:①对任意的实数x,都有f(x+2)=2f(x);②当x∈[-1,1]时,$f(x)=cos\frac{π}{2}x$.记函数g(x)=f(x)-log4(x+1),则函数g(x)在区间[0,10]内的零点个数是10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知P是抛物线y2=4x上一动点,则点P到直线l:2x-y+3=0距离的最小值是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{5}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,且过点$({1,\frac{3}{2}})$.若点M(x0,y0)在椭圆C上,则点$N({\frac{x_0}{a},\frac{y_0}{b}})$称为点M的一个“椭点”.
(I)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过抛物线y2=2px(p>0)的焦点F,且倾斜角为$\frac{π}{4}$的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某社区为调查当前居民的睡眠状况,从该社区的[10,70]岁的人群中随机抽取n人进行一次日平均睡眠时间的调查.这n人中各年龄组人数的频率分布直方图如图1所示,统计各年龄组的“亚健康族”(日平均睡眠时间符合健康标准的称为“健康族”,否则称为“亚健康族”)人数及相应频率,得到统计表如表所示.
组数分组亚健康族的人数占本组的频率
第一组[10,20)1000.5
第二组[20,30)195P
第三组[30,40)1200.6
第四组[40,50)a0.4
第五组[50,60)300.3
第六组[60,70)150.3
(Ⅰ)求n、P的值.
(Ⅱ)用分层抽样的方法从年龄在[30,50)岁的“压健康族”中抽取6人参加健康睡眠体检活动,现从6人中随机选取2人担任领队,求2名领队中恰有1人年龄在[40,50)岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,A1,A2为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的长轴的左、右端点,O为坐标原点,S,Q,T为椭圆上不同于A1,A2的三点,直线QA1,QA2,OS,OT围成一个平行四边形OPQR,则|OS|2+|OT|2=(  )
A.5B.3+$\sqrt{5}$C.9D.14

查看答案和解析>>

同步练习册答案