18£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÇÒ¹ýµã$£¨{1£¬\frac{3}{2}}£©$£®ÈôµãM£¨x0£¬y0£©ÔÚÍÖÔ²CÉÏ£¬Ôòµã$N£¨{\frac{x_0}{a}£¬\frac{y_0}{b}}£©$³ÆÎªµãMµÄÒ»¸ö¡°Íֵ㡱£®
£¨I£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl£ºy=kx+mÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬ÇÒA£¬BÁ½µãµÄ¡°Íֵ㡱·Ö±ðΪP£¬Q£¬ÒÔPQΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µã£¬ÊÔÅжϡ÷AOBµÄÃæ»ýÊÇ·ñΪ¶¨Öµ£¿ÈôΪ¶¨Öµ£¬Çó³ö¶¨Öµ£»Èô²»Îª¶¨Öµ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨I£©ÔËÓÃÀëÐÄÂʹ«Ê½ºÍ»ù±¾Á¿a£¬b£¬cµÄ¹ØÏµ£¬´úÈëµã$£¨{1£¬\frac{3}{2}}£©$£¬½â·½³Ì¿ÉµÃa£¬b£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨II£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¿ÉµÃ${P}£¨{\frac{x_1}{2}£¬\frac{y_1}{{\sqrt{3}}}}£©£¬Q£¨{\frac{x_2}{2}£¬\frac{y_2}{{\sqrt{3}}}}£©$£¬ÓÉÓÚÒÔPQΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µã£¬ËùÒÔ$\overrightarrow{OP}•\overrightarrow{OQ}=0$£¬ÔËÓÃÊýÁ¿»ýΪ0£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃÅбðʽ´óÓÚ0£¬Î¤´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬Èý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½¶¨Öµ£®

½â´ð ½â£º£¨I£©ÓÉÌâÒâÖªe=$\frac{c}{a}$=$\frac{1}{2}$£¬a2-b2=c2£¬
¼´${a^2}=\frac{4}{3}{b^2}$ ÓÖ$\frac{1}{a^2}+\frac{9}{{4{b^2}}}=1$£¬
¿ÉµÃa2=4£¬b2=3£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨II£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôò${P}£¨{\frac{x_1}{2}£¬\frac{y_1}{{\sqrt{3}}}}£©£¬Q£¨{\frac{x_2}{2}£¬\frac{y_2}{{\sqrt{3}}}}£©$£¬
ÓÉÓÚÒÔPQΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µã£¬ËùÒÔ$\overrightarrow{OP}•\overrightarrow{OQ}=0$£¬¼´$\frac{{{x_1}{x_2}}}{4}+\frac{{{y_1}{y_2}}}{3}=0$£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$µÃ£¨3+4k2£©x2+8kmx+4£¨m2-3£©=0£¬
¡÷=64m2k2-16£¨3+4k2£©£¨m2-3£©£¾0£¬»¯Îª3+4k2-m2£¾0£®
x1+x2=-$\frac{8km}{3+4{k}^{2}}$£¬x1x2=$\frac{4£¨{m}^{2}-3£©}{3+4{k}^{2}}$£¬
y1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2=k2x1x2+km£¨x1+x2£©+m2
=k2•$\frac{4£¨{m}^{2}-3£©}{3+4{k}^{2}}$+km£¨-$\frac{8km}{3+4{k}^{2}}$£©+m2=$\frac{3£¨{m}^{2}-4{k}^{2}£©}{3+4{k}^{2}}$£¬
´úÈë$\frac{{{x_1}{x_2}}}{4}+\frac{{{y_1}{y_2}}}{3}=0$£¬¼´${y_1}{y_2}=-\frac{3}{4}{x_1}{x_2}$£¬
µÃ£º$\frac{{3£¨{m^2}-4{k^2}£©}}{{3+4{k^2}}}=-\frac{3}{4}•\frac{{4£¨{m^2}-3£©}}{{3+4{k^2}}}$£¬2m2-4k2=3£¬$\left|{AB}\right|=\sqrt{1+{k^2}}\sqrt{{{£¨{{x_1}+{x_2}}£©}^2}-4{x_1}{x_2}}=\sqrt{1+{k^2}}\frac{{\sqrt{48£¨{4{k^2}-{m^2}+3}£©}}}{{3+4{k^2}}}$£¬
Oµ½Ö±ÏßlµÄ¾àÀëΪ$d=\frac{\left|m\right|}{{\sqrt{1+{k^2}}}}$£¬
¡÷ABOµÄÃæ»ýΪ${S_¡÷}=\frac{1}{2}\left|{AB}\right|d=\frac{1}{2}\sqrt{1+{k^2}}\frac{{\sqrt{48£¨{4{k^2}-{m^2}+3}£©}}}{{3+4{k^2}}}\frac{\left|m\right|}{{\sqrt{1+{k^2}}}}=\frac{1}{2}\frac{{\sqrt{48£¨{4{k^2}-{m^2}+3}£©}\left|m\right|}}{{3+4{k^2}}}$£¬
°Ñ2m2-4k2=3´úÈëÉÏʽµÃ${S_¡÷}=\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÁËÖ±ÏߺÍÔ²×¶ÇúÏßµÄ×ۺϣ¬¿¼²éÁËÏÒ³¤¹«Ê½µÄÓ÷¨£¬ÑµÁ·ÁËÖ±ÏߺÍÔ²×¶ÇúÏß¹ØÏµÖеÄÉè¶ø²»ÇóµÄ½âÌâ·½·¨£¬ÌåÏÖÁËÕûÌåÔËËã˼Ï룬ѵÁ·ÁËѧÉúµÄ¼ÆËãÄÜÁ¦£¬¸ÃÌâÊÇÓÐÒ»¶¨ÄѶÈÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èôx=2+$\sqrt{3}$£¬y=2-$\sqrt{3}$£¬Çóx2y+xy2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÏÂÃæµÄ³ÌÐò¶Î½á¹ûÊÇ£¨¡¡¡¡£©
A£®-3B£®-10C£®0D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®É躯Êýf£¨x£©=lnx-$\frac{1}{2}$ax2-2x£¬ÆäÖÐa¡Ü0£®
£¨¢ñ£©ÈôÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³ÌΪy=2x+b£¬Çóa-2bµÄÖµ£»
£¨¢ò£©ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ó£©É躯Êýg£¨x£©=x2-3x+3£¬Èç¹û¶ÔÓÚÈÎÒâµÄx£¬t¡Ê£¨0£¬1]£¬¶¼ÓÐf£¨x£©¡Üg£¨t£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýy=f£¨x£©µÄ¶¨ÒåÓòÄÚÈÎÒâµÄ×Ô±äÁ¿x¶¼ÓÐf£¨$\frac{¦Ð}{2}$-x£©=f£¨$\frac{¦Ð}{2}$+x£©£¬ÇÒ¶ÔÈÎÒâµÄx¡Ê£¨-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$£©£¬¶¼ÓÐf¡ä£¨x£©+f£¨x£©tanx£¾0£¨ÆäÖÐf¡ä£¨x£©ÊǺ¯Êýf£¨x£©µÄµ¼º¯Êý£©£¬Éèa=f£¨$\frac{4¦Ð}{3}$£©£¬b=f£¨$\frac{2¦Ð}{3}$£©£¬c=$\frac{1}{2}$f£¨0£©£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
A£®a£¼c£¼bB£®c£¼a£¼bC£®c£¼b£¼aD£®b£¼a£¼c

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\frac{lnx}{x}$£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼äºÍ×î´óÖµ£»
£¨2£©ÈôÁ½²»µÈÕýÊým£¬nÂú×ãmn=nm£¬º¯Êýf£¨x£©µÄµ¼º¯ÊýΪf¡ä£¨x£©£¬ÇóÖ¤£ºf¡ä£¨$\frac{m+n}{2}$£©£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÅ×ÎïÏßx2=-2py£¨p£¾0£©¾­¹ýµã£¨2£¬-2£©£¬ÔòÅ×ÎïÏߵĽ¹µã×ø±êΪ£¨¡¡¡¡£©
A£®$£¨0£¬-\frac{1}{8}£©$B£®$£¨-\frac{1}{8}£¬0£©$C£®$£¨0£¬-\frac{1}{2}£©$D£®$£¨-\frac{1}{2}£¬0£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÇúÏß$y=\frac{2x}{x-1}$ÔÚµãP£¨2£¬4£©´¦µÄÇÐÏßÓëÖ±ÏßlƽÐÐÇÒ¾àÀëΪ$2\sqrt{5}$£¬ÔòÖ±ÏßlµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®2x+y+2=0B£®2x+y+2=0»ò2x+y-18=0
C£®2x-y-18=0D£®2x-y+2=0»ò2x-y-18=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®${£¨x+\frac{1}{x}£©^2}•{£¨1+x£©^5}$Õ¹¿ªÊ½ÖÐxÏîµÄϵÊýΪ20£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸