·ÖÎö £¨I£©ÔËÓÃÀëÐÄÂʹ«Ê½ºÍ»ù±¾Á¿a£¬b£¬cµÄ¹ØÏµ£¬´úÈëµã$£¨{1£¬\frac{3}{2}}£©$£¬½â·½³Ì¿ÉµÃa£¬b£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨II£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬¿ÉµÃ${P}£¨{\frac{x_1}{2}£¬\frac{y_1}{{\sqrt{3}}}}£©£¬Q£¨{\frac{x_2}{2}£¬\frac{y_2}{{\sqrt{3}}}}£©$£¬ÓÉÓÚÒÔPQΪֱ¾¶µÄÔ²¾¹ý×ø±êԵ㣬ËùÒÔ$\overrightarrow{OP}•\overrightarrow{OQ}=0$£¬ÔËÓÃÊýÁ¿»ýΪ0£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃÅбðʽ´óÓÚ0£¬Î¤´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬Èý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½¶¨Öµ£®
½â´ð ½â£º£¨I£©ÓÉÌâÒâÖªe=$\frac{c}{a}$=$\frac{1}{2}$£¬a2-b2=c2£¬
¼´${a^2}=\frac{4}{3}{b^2}$ ÓÖ$\frac{1}{a^2}+\frac{9}{{4{b^2}}}=1$£¬
¿ÉµÃa2=4£¬b2=3£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨II£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôò${P}£¨{\frac{x_1}{2}£¬\frac{y_1}{{\sqrt{3}}}}£©£¬Q£¨{\frac{x_2}{2}£¬\frac{y_2}{{\sqrt{3}}}}£©$£¬
ÓÉÓÚÒÔPQΪֱ¾¶µÄÔ²¾¹ý×ø±êԵ㣬ËùÒÔ$\overrightarrow{OP}•\overrightarrow{OQ}=0$£¬¼´$\frac{{{x_1}{x_2}}}{4}+\frac{{{y_1}{y_2}}}{3}=0$£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+m}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$µÃ£¨3+4k2£©x2+8kmx+4£¨m2-3£©=0£¬
¡÷=64m2k2-16£¨3+4k2£©£¨m2-3£©£¾0£¬»¯Îª3+4k2-m2£¾0£®
x1+x2=-$\frac{8km}{3+4{k}^{2}}$£¬x1x2=$\frac{4£¨{m}^{2}-3£©}{3+4{k}^{2}}$£¬
y1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2=k2x1x2+km£¨x1+x2£©+m2
=k2•$\frac{4£¨{m}^{2}-3£©}{3+4{k}^{2}}$+km£¨-$\frac{8km}{3+4{k}^{2}}$£©+m2=$\frac{3£¨{m}^{2}-4{k}^{2}£©}{3+4{k}^{2}}$£¬
´úÈë$\frac{{{x_1}{x_2}}}{4}+\frac{{{y_1}{y_2}}}{3}=0$£¬¼´${y_1}{y_2}=-\frac{3}{4}{x_1}{x_2}$£¬
µÃ£º$\frac{{3£¨{m^2}-4{k^2}£©}}{{3+4{k^2}}}=-\frac{3}{4}•\frac{{4£¨{m^2}-3£©}}{{3+4{k^2}}}$£¬2m2-4k2=3£¬$\left|{AB}\right|=\sqrt{1+{k^2}}\sqrt{{{£¨{{x_1}+{x_2}}£©}^2}-4{x_1}{x_2}}=\sqrt{1+{k^2}}\frac{{\sqrt{48£¨{4{k^2}-{m^2}+3}£©}}}{{3+4{k^2}}}$£¬
Oµ½Ö±ÏßlµÄ¾àÀëΪ$d=\frac{\left|m\right|}{{\sqrt{1+{k^2}}}}$£¬
¡÷ABOµÄÃæ»ýΪ${S_¡÷}=\frac{1}{2}\left|{AB}\right|d=\frac{1}{2}\sqrt{1+{k^2}}\frac{{\sqrt{48£¨{4{k^2}-{m^2}+3}£©}}}{{3+4{k^2}}}\frac{\left|m\right|}{{\sqrt{1+{k^2}}}}=\frac{1}{2}\frac{{\sqrt{48£¨{4{k^2}-{m^2}+3}£©}\left|m\right|}}{{3+4{k^2}}}$£¬
°Ñ2m2-4k2=3´úÈëÉÏʽµÃ${S_¡÷}=\sqrt{3}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÁËÖ±ÏߺÍÔ²×¶ÇúÏßµÄ×ۺϣ¬¿¼²éÁËÏÒ³¤¹«Ê½µÄÓ÷¨£¬ÑµÁ·ÁËÖ±ÏߺÍÔ²×¶ÇúÏß¹ØÏµÖеÄÉè¶ø²»ÇóµÄ½âÌâ·½·¨£¬ÌåÏÖÁËÕûÌåÔËËã˼Ï룬ѵÁ·ÁËѧÉúµÄ¼ÆËãÄÜÁ¦£¬¸ÃÌâÊÇÓÐÒ»¶¨ÄѶÈÎÊÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -3 | B£® | -10 | C£® | 0 | D£® | -2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | a£¼c£¼b | B£® | c£¼a£¼b | C£® | c£¼b£¼a | D£® | b£¼a£¼c |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $£¨0£¬-\frac{1}{8}£©$ | B£® | $£¨-\frac{1}{8}£¬0£©$ | C£® | $£¨0£¬-\frac{1}{2}£©$ | D£® | $£¨-\frac{1}{2}£¬0£©$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2x+y+2=0 | B£® | 2x+y+2=0»ò2x+y-18=0 | ||
| C£® | 2x-y-18=0 | D£® | 2x-y+2=0»ò2x-y-18=0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com