精英家教网 > 高中数学 > 题目详情
10.已知抛物线x2=-2py(p>0)经过点(2,-2),则抛物线的焦点坐标为(  )
A.$(0,-\frac{1}{8})$B.$(-\frac{1}{8},0)$C.$(0,-\frac{1}{2})$D.$(-\frac{1}{2},0)$

分析 抛物线x2=-2py(p>0)经过点(2,-2),代值计算即可求出p,能求出焦点坐标.

解答 解:抛物线x2=-2py(p>0)经过点(2,-2),
∴4=4p,
∴p=1,
∴抛物线的焦点坐标为(0,-$\frac{1}{2}$),
故选:C.

点评 本题考查抛物线的焦点坐标的求法及应用,是基础题,解题时要熟练掌握抛物线的简单性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知复数z=$\frac{1-i}{1+i}$,求z4+2z3的虚部.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知定义域为R的函数f(x)满足:①对任意的实数x,都有f(x+2)=2f(x);②当x∈[-1,1]时,$f(x)=cos\frac{π}{2}x$.记函数g(x)=f(x)-log4(x+1),则函数g(x)在区间[0,10]内的零点个数是10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,且过点$({1,\frac{3}{2}})$.若点M(x0,y0)在椭圆C上,则点$N({\frac{x_0}{a},\frac{y_0}{b}})$称为点M的一个“椭点”.
(I)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.过抛物线y2=2px(p>0)的焦点F,且倾斜角为$\frac{π}{4}$的直线与抛物线交于A,B两点,若弦AB的垂直平分线经过点(0,2),则p等于$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左顶点和上顶点分别为A、B,左、右焦点分别是F1,F2,在线段AB上有且只有一个点P满足PF1⊥PF2,则椭圆的离心率为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{\sqrt{5}}}{3}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某社区为调查当前居民的睡眠状况,从该社区的[10,70]岁的人群中随机抽取n人进行一次日平均睡眠时间的调查.这n人中各年龄组人数的频率分布直方图如图1所示,统计各年龄组的“亚健康族”(日平均睡眠时间符合健康标准的称为“健康族”,否则称为“亚健康族”)人数及相应频率,得到统计表如表所示.
组数分组亚健康族的人数占本组的频率
第一组[10,20)1000.5
第二组[20,30)195P
第三组[30,40)1200.6
第四组[40,50)a0.4
第五组[50,60)300.3
第六组[60,70)150.3
(Ⅰ)求n、P的值.
(Ⅱ)用分层抽样的方法从年龄在[30,50)岁的“压健康族”中抽取6人参加健康睡眠体检活动,现从6人中随机选取2人担任领队,求2名领队中恰有1人年龄在[40,50)岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)在R上存在导函数f′(x),对?x∈R,f(-x)+f(x)=x2,且当x∈(0,+∞),f′(x)>x,若有f(1-a)-f(a)≥$\frac{1}{2}$-a,则实数a的取值范围为(  )(  )
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,满足$|\overrightarrow a|=4,|\overrightarrow b|=2$,$\overrightarrow a•\overrightarrow b=0$,$(\overrightarrow c-\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$.
(1)求$|\overrightarrow a-2\overrightarrow b|$的值;
(2)求$|\overrightarrow c|$的最大值.

查看答案和解析>>

同步练习册答案