精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,满足$|\overrightarrow a|=4,|\overrightarrow b|=2$,$\overrightarrow a•\overrightarrow b=0$,$(\overrightarrow c-\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$.
(1)求$|\overrightarrow a-2\overrightarrow b|$的值;
(2)求$|\overrightarrow c|$的最大值.

分析 (1)建立平面直角坐标系,由已知令$\overrightarrow a=(4,0)$,$\overrightarrow b=(0,2)$,$\overrightarrow c=(x,y)$,求得$\overrightarrow{a}-2\overrightarrow{b}$的坐标,代入向量模的公式计算;
(2)由$(\overrightarrow c-\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$,得(x-2)2+(y-1)2=5,令$x=2+\sqrt{5}cosθ$,$y=1+\sqrt{5}sinθ$,求出$|\overrightarrow{c}|$,利用辅助角公式化积后得答案.

解答 解:(1)建立平面直角坐标系,令$\overrightarrow a=(4,0)$,$\overrightarrow b=(0,2)$,$\overrightarrow c=(x,y)$,
则$\overrightarrow a-2\overrightarrow b=(4,0)-2(0,2)=(4,-4)$,
∴$|\overrightarrow a-2\overrightarrow b|=\sqrt{{4^2}+{{(-4)}^2}}=4\sqrt{2}$;
(2)∵$(\overrightarrow c-\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=(x-4,y)•(x,y-2)=0$,
∴(x-2)2+(y-1)2=5,
令$x=2+\sqrt{5}cosθ$,$y=1+\sqrt{5}sinθ$,
则$|\overrightarrow c|=\sqrt{{x^2}+{y^2}}=\sqrt{{{(2+\sqrt{5}cosθ)}^2}+{{(1+\sqrt{5}sinθ)}^2}}$
=$\sqrt{10+4\sqrt{5}cosθ+2\sqrt{5}sinθ}$=$\sqrt{10+10sin(θ+φ)}≤\sqrt{10+10}=2\sqrt{5}$.
故$|\overrightarrow c|$的最大值为$2\sqrt{5}$.

点评 本题考查平面向量的数量积运算,考查了向量加减法的坐标运算,训练了向量模的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知抛物线x2=-2py(p>0)经过点(2,-2),则抛物线的焦点坐标为(  )
A.$(0,-\frac{1}{8})$B.$(-\frac{1}{8},0)$C.$(0,-\frac{1}{2})$D.$(-\frac{1}{2},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,网格线上小正方形边长为1,用两个平面去截正方体,所得的几何体的三视图为粗线部分,则此几何体的体积为(  )
A.$\frac{20}{3}$B.$\frac{19}{3}$C.6D.$\frac{17}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.${(x+\frac{1}{x})^2}•{(1+x)^5}$展开式中x项的系数为20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sin(ωx+$\frac{π}{3}$)+2(ω>0)的图形向右平移$\frac{π}{3}$个单位后与原图象重合,则ω的最小值是(  )
A.6B.3C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=e1-x(-a+cosx),a∈R.
(Ⅰ)若函数f(x)存在单调减区间,求实数a的取值范围;
(Ⅱ)若a=0,证明:$?x∈[{-1,\frac{1}{2}}]$,总有f(-x-1)+2f′(x)•cos(x+1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx+ax2+x,a∈R.
(Ⅰ)当a=1时,求函数f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调区间;
(Ⅲ)已知a<0,对于函数f(x)图象上任意不同的两点A(x1,y1),B(x2,y2),其中x2>x1,直线AB的斜率为k,记N(u,0),若$\overrightarrow{AB}=λ\overrightarrow{AN}(1≤λ≤2)$,求证f′(u)<k.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点分别为F1,F2,点P是椭圆上异于长轴端点的任意一点,若M是线段PF1上一点,且满足$\overrightarrow{M{F}_{1}}$=2$\overrightarrow{PM}$,$\overrightarrow{M{F}_{2}}•\overrightarrow{OP}$=0,则椭圆离心率的取值范围为($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{x-a}{(x+a)^{2}}$.
(Ⅰ)若f′(a)=1,求a的值;
(Ⅱ)设a≤0,若对于定义域内的任意x1,总存在x2使得f(x2)<f(x1),求a的取值范围.

查看答案和解析>>

同步练习册答案