精英家教网 > 高中数学 > 题目详情
8.${(x+\frac{1}{x})^2}•{(1+x)^5}$展开式中x项的系数为20.

分析 变形${(x+\frac{1}{x})^2}•{(1+x)^5}$=$({x}^{2}+2+\frac{1}{{x}^{2}})$(1+x)5,再利用通项公式即可得出.

解答 解:${(x+\frac{1}{x})^2}•{(1+x)^5}$=$({x}^{2}+2+\frac{1}{{x}^{2}})$(1+x)5
(1+x)5的展开式的通项公式Tr+1=${∁}_{5}^{r}$xr
令r=1,则T2=5x;令r=3,则T4=${∁}_{5}^{3}$x3=10x3
∴${(x+\frac{1}{x})^2}•{(1+x)^5}$展开式中x项的系数=2×5+10=20.
故答案为:20.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,且过点$({1,\frac{3}{2}})$.若点M(x0,y0)在椭圆C上,则点$N({\frac{x_0}{a},\frac{y_0}{b}})$称为点M的一个“椭点”.
(I)求椭圆C的标准方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)在R上存在导函数f′(x),对?x∈R,f(-x)+f(x)=x2,且当x∈(0,+∞),f′(x)>x,若有f(1-a)-f(a)≥$\frac{1}{2}$-a,则实数a的取值范围为(  )(  )
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=xex-aex-1,且f′(1)=e.
(1)求a的值及f(x)的单调区间;
(2)若关于x的方程f(x)=kx2-2(k>2)存在两个不相等的正实数根x1,x2,证明:|x1-x2|>ln$\frac{4}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,A1,A2为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的长轴的左、右端点,O为坐标原点,S,Q,T为椭圆上不同于A1,A2的三点,直线QA1,QA2,OS,OT围成一个平行四边形OPQR,则|OS|2+|OT|2=(  )
A.5B.3+$\sqrt{5}$C.9D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正方形ABCD的边长为2,点E是AB边上的中点,则$\overrightarrow{DE}•\overrightarrow{DC}$的值为(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,满足$|\overrightarrow a|=4,|\overrightarrow b|=2$,$\overrightarrow a•\overrightarrow b=0$,$(\overrightarrow c-\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$.
(1)求$|\overrightarrow a-2\overrightarrow b|$的值;
(2)求$|\overrightarrow c|$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:y2=4x,经过点(4,0)的直线l交抛物线C于A,B两点,M(-4,0),O为坐标原点.
(Ⅰ)证明:kAM+kBM=0;
(Ⅱ)若直线l的斜率为k(k<0),求$\frac{k}{{k}_{AM}•{k}_{BM}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{{x}^{3}+x}{{x}^{4}+6{x}^{2}+1}$+1的最大值与最小值的乘积为(  )
A.2B.$\frac{7}{9}$C.$\frac{15}{16}$D.$\frac{17}{16}$

查看答案和解析>>

同步练习册答案