| A. | 2 | B. | $\frac{7}{9}$ | C. | $\frac{15}{16}$ | D. | $\frac{17}{16}$ |
分析 求导f′(x)=$\frac{(3{x}^{2}+1)({x}^{4}+6{x}^{2}+1)-({x}^{3}+x)(4{x}^{3}+12x)}{({x}^{4}+6{x}^{2}+1)^{2}}$=$\frac{-({x}^{2}-1)^{3}}{{(x}^{4}+6{x}^{2}+1)^{2}}$,从而利用导数的正负确定函数的单调性,从而确定函数的最值即可.
解答
解:∵f(x)=$\frac{{x}^{3}+x}{{x}^{4}+6{x}^{2}+1}$+1,
∴f′(x)=$\frac{(3{x}^{2}+1)({x}^{4}+6{x}^{2}+1)-({x}^{3}+x)(4{x}^{3}+12x)}{({x}^{4}+6{x}^{2}+1)^{2}}$
=$\frac{-({x}^{2}-1)^{3}}{{(x}^{4}+6{x}^{2}+1)^{2}}$,
故f(x)在(-∞,-1)上是减函数,
在(-1,1)上是增函数,在(1,+∞)上是减函数
且x→-∞时,f(x)→1;x→+∞时,f(x)→1;
而f(-1)=$\frac{-1-1}{1+6+1}$+1=$\frac{3}{4}$,
f(1)=$\frac{1+1}{1+6+1}$+1=$\frac{5}{4}$,
故f(-1)f(1)=$\frac{15}{16}$,
故选:C.
点评 本题考查了导数的综合应用及转化思想的应用,同时考查了分类讨论的思想应用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 16 | C. | 10 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 3 | C. | 3$\sqrt{2}$-1 | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com