精英家教网 > 高中数学 > 题目详情
7.已知点P为抛物线y2=4x上的动点,点Q为圆C:(x+3)2+(y-3)2=1上的动点,d为点P到y轴的距离,则d+|PQ|的最小值为(  )
A.$\sqrt{5}$B.3C.3$\sqrt{2}$-1D.$\frac{7}{2}$

分析 设抛物线焦点为F,根据抛物线的性质可知d=|PF|-1,连结CF,则d+|PQ|的最小值为|CF|-1-1.

解答 解:∵抛物线的准线方程为x=-1,焦点F(1,0).P到直线x=-1的距离等于|PF|,
∴P到y轴的距离d=|PF|-1,
∴d+|PQ|=|PF|+|PQ|-1.
∴当F,P,Q三点共线时,|PF|+|PQ|取得最小值|CF|-1.
∵C(-3,3),F(1,0),∴|CF|=5,
∴d+|PQ|的最小值为5-1-1=3.
故选:B.

点评 本题考查了抛物线的性质,两点间的距离公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:y2=4x,经过点(4,0)的直线l交抛物线C于A,B两点,M(-4,0),O为坐标原点.
(Ⅰ)证明:kAM+kBM=0;
(Ⅱ)若直线l的斜率为k(k<0),求$\frac{k}{{k}_{AM}•{k}_{BM}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{{x}^{3}+x}{{x}^{4}+6{x}^{2}+1}$+1的最大值与最小值的乘积为(  )
A.2B.$\frac{7}{9}$C.$\frac{15}{16}$D.$\frac{17}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知空间几何体的三视图如图所示,则该几何体的表面积是8π;几何体的体积是$\frac{10}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=ex(ax-1),g(x)=a(x-1),a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若有且仅有两个整数xi(i=1,2),使得f(xi)<g(xi)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和Sn,且满足:$\frac{1}{{{a_1}+1}}$+$\frac{2}{{{a_2}+1}}$+$\frac{3}{{{a_3}+1}}$+…+$\frac{n}{{{a_n}+1}}$=n,n∈N+
(1)求an
(2)设Tn=$\frac{1}{{{S_{n+1}}}}$+$\frac{1}{{{S_{n+2}}}}$+$\frac{1}{{{S_{n+3}}}}$+…+$\frac{1}{{{S_{2n}}}}$,是否存在整数m,使对任意n∈N+,不等式Tn≤m恒成立?若存在,求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,则$\frac{{b}^{2}+1}{a}$的最小值为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下面的伪代码输出的结果是24.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知(1+x)(1-ax)2016展开式中含x项的系数为2017,则实数a=-1.

查看答案和解析>>

同步练习册答案