精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\frac{x-a}{(x+a)^{2}}$.
(Ⅰ)若f′(a)=1,求a的值;
(Ⅱ)设a≤0,若对于定义域内的任意x1,总存在x2使得f(x2)<f(x1),求a的取值范围.

分析 (Ⅰ)求出函数的导数,得到关于a的方程,解出即可;(Ⅱ)问题转化为f(x)不存在最小值,通过讨论a的范围求出函数的单调性,判断函数有无最小值,从而确定a的范围即可.

解答 (Ⅰ)解:函数y=f(x)的定义域D={x|x∈R且x≠-a},
由题意,f′(a)有意义,所以a≠0.
求导,得f′(x)=-$\frac{(x+a)(x-3a)}{{(x+a)}^{4}}$.…(3分)
所以f′(a)=$\frac{1}{{4a}^{2}}$=1,解得:a=±$\frac{1}{2}$.…(5分)
(Ⅱ)解:“对于定义域内的任意x1,总存在x2使得f(x2)<f(x1),
等价于“f(x)不存在最小值”.                            …(6分)
①当a=0时,
由f(x)=$\frac{1}{x}$,得f(x)无最小值,符合题意.                    …(8分)
②当a<0时,
令f′(x)=0,得x=-a 或x=3a.…(9分)
随着x的变化时,f′(x)与f(x)的变化情况如下表:

x(-∞,3a)3a(3a,-a)-a(-a,+∞)
f′(x)-0+不存在-
f(x)极小 不存在
…(11分)
所以函数f(x)的单调递减区间为(-∞,3a),(-a,+∞),单调递增区间为(3a,-a).
因为当x>a时,f(x)=$\frac{x-a}{{(x+a)}^{2}}$>0,当x<a时,f(x)<0,所以f(x)min=f(3a).
所以当x1=3a时,不存在x2使得f(x2)<f(x1).
综上所述,a的取值范围为a∈{0}.…(13分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,满足$|\overrightarrow a|=4,|\overrightarrow b|=2$,$\overrightarrow a•\overrightarrow b=0$,$(\overrightarrow c-\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$.
(1)求$|\overrightarrow a-2\overrightarrow b|$的值;
(2)求$|\overrightarrow c|$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx,g(x)=ax2-(2a+1)x,a∈R
(1)当a=1时,求不等式f(x)•g(x)>0的解集;
(2)若a≠0,求函数F(x)=f(x)+g(x)的单调递减区间;
(3)求证:当a∈[-$\frac{3+2\sqrt{2}}{2}$,$\frac{2}{3}$]时,对于任意两个不等的实数x1,x2∈[$\frac{1}{4}$,$\frac{3}{4}$],均有|f(x1)-f(x2)|>|g(x1)-g(x2)|成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\frac{{x}^{3}+x}{{x}^{4}+6{x}^{2}+1}$+1的最大值与最小值的乘积为(  )
A.2B.$\frac{7}{9}$C.$\frac{15}{16}$D.$\frac{17}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$,它的一个顶点恰好是抛物线x2=4$\sqrt{2}$y的焦点.
(1)求椭圆C的方程;
(2)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点.当点A,B运动时,满足∠APQ=∠BPQ,问直线AB的斜率是否为定值,如果为定值,求出斜率的值;如果不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知空间几何体的三视图如图所示,则该几何体的表面积是8π;几何体的体积是$\frac{10}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=ex(ax-1),g(x)=a(x-1),a∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若有且仅有两个整数xi(i=1,2),使得f(xi)<g(xi)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为2,则$\frac{{b}^{2}+1}{a}$的最小值为(  )
A.2$\sqrt{3}$B.$\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距为2.且经过点(${\frac{2}{3}$,$\frac{{2\sqrt{6}}}{3}}$).
(I)求椭圆C的方程;
(Ⅱ)若过点D(4,O)的直线l与C交于不同的两点A,B,且A在DB之间,试求△AOD与△BOD面积之比的取值范围.

查看答案和解析>>

同步练习册答案