| A. | (-∞,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,+∞) | C. | (-∞,1] | D. | [1,+∞) |
分析 构造函数g(x),可判函数g(x)为奇函数且在R上是增函数,由函数的性质可得a的不等式,解不等式可得.
解答 解:∵f(-x)+f(x)=x2,∴f(x)-$\frac{1}{2}$x2 +f(-x)-$\frac{1}{2}$x2 =0,
令g(x)=f(x)-$\frac{1}{2}$x2,∵g(-x)+g(x)=f(-x)-$\frac{1}{2}$x2 +f(x)-$\frac{1}{2}$x2 =0,
∴函数g(x)为奇函数.∵x∈(0,+∞)时,f′(x)>x.
∴x∈(0,+∞)时,g′(x)=f′(x)-x>0,
故函数g(x)在(0,+∞)上是增函数,函数g(x)在(-∞,0)上也是增函数,
由f(0)=0,可得g(x)在R上是增函数.
f(1-a)-f(a)≥$\frac{1}{2}$-a等价于f(1-a)-$\frac{1}{2}$(1-a)2≥f(a)-$\frac{1}{2}$a2,
即g(1-a)≥g(a),∴1-a≥a,解得a≤$\frac{1}{2}$.
故选:A.
点评 本题考查利用导数研究函数的单调性,由已知条件构造出g(x)是解决本题的关键,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | $(0,-\frac{1}{8})$ | B. | $(-\frac{1}{8},0)$ | C. | $(0,-\frac{1}{2})$ | D. | $(-\frac{1}{2},0)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+y+2=0 | B. | 2x+y+2=0或2x+y-18=0 | ||
| C. | 2x-y-18=0 | D. | 2x-y+2=0或2x-y-18=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{20}{3}$ | B. | $\frac{19}{3}$ | C. | 6 | D. | $\frac{17}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com