| A. | 2x+y+2=0 | B. | 2x+y+2=0或2x+y-18=0 | ||
| C. | 2x-y-18=0 | D. | 2x-y+2=0或2x-y-18=0 |
分析 求出原函数的导函数,求得曲线$y=\frac{2x}{x-1}$在点P(2,4)处的切线方程,设出直线l的方程,再由两条平行线间的距离求得答案.
解答 解:由$y=\frac{2x}{x-1}$,得$y′=\frac{2(x-1)-2x}{(x-1)^{2}}=\frac{-2}{(x-1)^{2}}$,
∴y′|x=2=-2,
∴曲线$y=\frac{2x}{x-1}$在点P(2,4)处的切线方程为y-4=-2(x-2),
即2x+y-8=0.
设l:2x+y+m=0.
由两条平行线间的距离公式得$\frac{|-8-m|}{\sqrt{5}}=2\sqrt{5}$,
解得:m=2或m=-18.
∴直线l的方程为2x+y+2=0或2x+y-18=0.
故选:B.
点评 本题考查利用导数研究过曲线上某点处的切线方程,考查了两条平行线间的距离公式,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}-1}}{2}$ | C. | $\frac{{\sqrt{5}}}{3}$ | D. | $\frac{{\sqrt{5}-1}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 组数 | 分组 | 亚健康族的人数 | 占本组的频率 |
| 第一组 | [10,20) | 100 | 0.5 |
| 第二组 | [20,30) | 195 | P |
| 第三组 | [30,40) | 120 | 0.6 |
| 第四组 | [40,50) | a | 0.4 |
| 第五组 | [50,60) | 30 | 0.3 |
| 第六组 | [60,70) | 15 | 0.3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{2}$] | B. | [$\frac{1}{2}$,+∞) | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com