| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}-1}}{2}$ | C. | $\frac{{\sqrt{5}}}{3}$ | D. | $\frac{{\sqrt{5}-1}}{2}$ |
分析 由题意可求得AB的方程,设出P点坐标,代入AB的方程,由PF1⊥PF2,得$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,运用导数求得极值点,结合椭圆的离心率公式,解方程即可求得答案.
解答
解:依题意,作图如下:
由A(-a,0),B(0,b),F1(-c,0),F2(c,0),
可得直线AB的方程为:$\frac{x}{-a}$+$\frac{y}{b}$=1,整理得:bx-ay+ab=0,
设直线AB上的点P(x,y),则bx=ay-ab,
x=$\frac{a}{b}$y-a,
由PF1⊥PF2,
∴$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(-c-x,-y)•(c-x,-y)=x2+y2-c2
=($\frac{a}{b}$y-a)2+y2-c2,
令f(y)=($\frac{a}{b}$y-a)2+y2-c2,
则f′(y)=2($\frac{a}{b}$y-a)•$\frac{a}{b}$+2y,
由f′(y)=0得:y=$\frac{{a}^{2}b}{{a}^{2}+{b}^{2}}$,于是x=-$\frac{a{b}^{2}}{{a}^{2}+{b}^{2}}$,
∴$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=(-$\frac{a{b}^{2}}{{a}^{2}+{b}^{2}}$)2+($\frac{{a}^{2}b}{{a}^{2}+{b}^{2}}$)2-c2=0,
整理得:$\frac{{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$=c2,又b2=a2-c2,e2=$\frac{{c}^{2}}{{a}^{2}}$,
∴e4-3e2+1=0,
∴e2=$\frac{3±\sqrt{5}}{2}$,又椭圆的离心率e∈(0,1),
∴e2=$\frac{3-\sqrt{5}}{2}$=($\frac{\sqrt{5}-1}{2}$)2,
可得e=$\frac{\sqrt{5}-1}{2}$,
另解:由题意可得,直线AB与圆O:x2+y2=c2相切,
可得d=$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$=c,
又b2=a2-c2,e2=$\frac{{c}^{2}}{{a}^{2}}$,
∴e4-3e2+1=0,
∴e2=$\frac{3±\sqrt{5}}{2}$,又椭圆的离心率e∈(0,1),
∴e2=$\frac{3-\sqrt{5}}{2}$=($\frac{\sqrt{5}-1}{2}$)2,
可得e=$\frac{\sqrt{5}-1}{2}$,
故选:D.
点评 本题考查椭圆的性质,向量的数量积的坐标表示,考查直线的方程的运用,着重考查椭圆离心率,以及化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 点(3,0)在曲线C上 | B. | 点(0,-$\frac{2}{3}$)在曲线C上 | ||
| C. | 点($\frac{3}{2}$,1)在曲线C上 | D. | 点(0,-$\frac{8}{3}$)在曲线C上 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,-\frac{1}{8})$ | B. | $(-\frac{1}{8},0)$ | C. | $(0,-\frac{1}{2})$ | D. | $(-\frac{1}{2},0)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+y+2=0 | B. | 2x+y+2=0或2x+y-18=0 | ||
| C. | 2x-y-18=0 | D. | 2x-y+2=0或2x-y-18=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com