精英家教网 > 高中数学 > 题目详情
4.椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$的短轴的长是(  )
A.3B.4C.6D.8

分析 求得椭圆的a=4,b=3,且焦点在x轴上,即可得到椭圆的短轴长2b.

解答 解:椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$的a=4,b=3,且焦点在x轴上,
可得椭圆的短轴长为2b=6,
故选:C.

点评 本题考查椭圆的方程和性质,主要是短轴长的求法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率$e=\frac{{2\sqrt{5}}}{5}$,左顶点A与右焦点F的距离$AF=2+\sqrt{5}$.
(1)求椭圆C的方程;
(2)过右焦点F作斜率为k的直线l与椭圆C交于M,N两点,P(2,1)为定点,当△MNP的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sin(ωx+$\frac{π}{3}$)+2(ω>0)的图形向右平移$\frac{π}{3}$个单位后与原图象重合,则ω的最小值是(  )
A.6B.3C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx+ax2+x,a∈R.
(Ⅰ)当a=1时,求函数f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)讨论函数f(x)的单调区间;
(Ⅲ)已知a<0,对于函数f(x)图象上任意不同的两点A(x1,y1),B(x2,y2),其中x2>x1,直线AB的斜率为k,记N(u,0),若$\overrightarrow{AB}=λ\overrightarrow{AN}(1≤λ≤2)$,求证f′(u)<k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆的长轴长为22,短轴长为16,则椭圆上的点到椭圆中心距离的取值范围是(  )
A.[6,10]B.[6,8]C.[8,10]D.[8,11]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点分别为F1,F2,点P是椭圆上异于长轴端点的任意一点,若M是线段PF1上一点,且满足$\overrightarrow{M{F}_{1}}$=2$\overrightarrow{PM}$,$\overrightarrow{M{F}_{2}}•\overrightarrow{OP}$=0,则椭圆离心率的取值范围为($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax2+bx+c,当|x|≤1时,|f(x)|≤1恒成立.
(Ⅰ)若a=1,b=c,求实数b的取值范围;
(Ⅱ)若g(x)=|cx2-bx+a|,当|x|≤1时,求g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知抛物线C:y2=-8x的焦点为F,直线l:x=1,点A是l上的一动点,直线AF与抛物线C的一个交点为B,若$\overrightarrow{FA}=-3\overrightarrow{FB}$,则|AB|=(  )
A.20B.16C.10D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.抛物线C:y2=2px(p>0)的焦点为F,O为坐标原点,M为C上一点.若|MF|=2p,△MOF的面积为4$\sqrt{3}$,则抛物线方程为y2=8x.

查看答案和解析>>

同步练习册答案