精英家教网 > 高中数学 > 题目详情
10.设a是函数f(x)=($\frac{1}{2}$)x-log2x的零点,若x0<a,则f(x0)的值满足(  )
A.f(x0)=0B.f(x0)<0C.f(x0)>0D.f(x0)的符号不确定

分析 由函数零点的定义可得f(a)=0,由对数、指数函数的单调性判断出f(x)的单调性,结合条件和函数的单调性即可得到答案.

解答 解:由题意得,f(a)=0,
∵函数f(x)=($\frac{1}{2}$)x-log2x在(0,+∞)上递减,且x0<a,
∴f(x0)>f(a)=0,
故选:C.

点评 本题考查函数零点的定义,对数、指数函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=x3+ax2+3x在定义域上是增函数,则实数a的取值范围为[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.我国古代数学名著《九章算术》中的更相减损法的思路与图相似.执行该程序框图,若输入的a,b分别为14,18,则输出的a=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知二次函数y=f(x)的两个零点为0,1,且其图象的顶点恰好在函数y=log2x的图象上.函数f(x)在x∈[0,2]上的值域是[-1,8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC外接圆半径r=$\frac{\sqrt{{a}^{2}+{b}^{2}}}{2}$.运用类比方法,若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,求其外接球的半径R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{lnx}{x}$-a(a∈R)
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若函数f(x)有两个零点,求a的取值范围;
(Ⅲ)设若函数f(x)有两个零点为m,n,求证:mn>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2ex-lnx.(ln2≈0.6931,$\sqrt{e}$≈1.649)
(Ⅰ)当x≥1时,判断函数f(x)的单调性;
(Ⅱ)证明:当x>0时,不等式f(x)>1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow m=(sinx,cos(x+\frac{π}{4}))$,$\overrightarrow n=(cosx,-cos(x+\frac{π}{4}))$,且$f(x)=\overrightarrow m•\overrightarrow n$.
(1)求f(x)的单调递增区间;
(2)若函数$g(x)=f(x)-2{sin^2}x-m+\frac{3}{2}$在区间$[-\frac{π}{4},\frac{π}{4}]$上有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求$\overrightarrow{TM}$•$\overrightarrow{TN}$的最小值;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|是定值.

查看答案和解析>>

同步练习册答案