精英家教网 > 高中数学 > 题目详情
1.我国古代数学名著《九章算术》中的更相减损法的思路与图相似.执行该程序框图,若输入的a,b分别为14,18,则输出的a=(  )
A.2B.4C.6D.8

分析 由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.

解答 解:由a=14,b=18,a<b,
则b变为18-14=4,
由a>b,则a变为14-4=10,
由a>b,则a变为10-4=6,
由a>b,则a变为6-4=2,
由a<b,则b变为4-2=2,
由a=b=2,
则输出的a=2.
故选:A.

点评 本题考查算法和程序框图,主要考查循环结构的理解和运用,以及赋值语句的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边分别为a,b,c,1+cosA=λsin2A.
(1)若λ=2,求角A的大小;
(2)若sinB+sinC=$\sqrt{3}$sinA,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1坐标为(-2,0),F2为椭圆C的右焦点,点M($\sqrt{3}$,1)在椭圆C上.
(1)求椭圆C的方程;
(2)直线l过F2与椭圆C相交于P,Q两点,记弦PQ中点为N,过F2作直线l的垂线与直线ON交于点T.
①若直线l斜率为$\sqrt{3}$,求PF1+QF1的值;
②求证:点T总在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex,g(x)=mx+n.
(1)设h(x)=f(x)-g(x).当n=0时,若函数h(x)在(-1,+∞)上没有零点,求m的取值范围;
(2)设函数r(x)=$\frac{m}{f(x)}+\frac{nx}{g(x)}$,且n=4m(m>0),求证:x≥0时,r(x)≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设定义在(-1,1)上的函数f(x)的导函数f′(x)=5+cosx,且f(0)=0,则不等式f(x-1)+f(1-x2)<0的解集为(  )
A.{x|1$<x<\sqrt{2}$}B.{x|x>1或x<-1}C.{x|-1<x<1}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱锥A-BCD中,AB=AC=AD=BC=CD=4,$BD=4\sqrt{2}$,E,F分别为AC,CD的中点,G为线段BD上一点.
(Ⅰ)求直线BE和AF所成角的余弦值;
(Ⅱ)当直线BE∥平面AGF时,求四棱锥A-BCFG的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过抛物线τ:y2=8x的焦点F作直线交抛物线于A,B两点,若|AF|=6,则抛物线τ的顶点到直线AB的距离为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a是函数f(x)=($\frac{1}{2}$)x-log2x的零点,若x0<a,则f(x0)的值满足(  )
A.f(x0)=0B.f(x0)<0C.f(x0)>0D.f(x0)的符号不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≥0)
(1)当a=0时,求f(x)的极值;
(2)当a<0时,讨论f(x)的单调性;
(3)若对于任意的x1,x2∈[1,3],a∈(-∞,-2)都有|f(x1)-f(x2)|<(m+ln3)a-2ln3,求实数m的取值范围.

查看答案和解析>>

同步练习册答案