精英家教网 > 高中数学 > 题目详情

对于给定数列{cn},如果存在实常数pq使得cn+1pcnq对于任意nN+都成立,我们称数列{cn}是“M类数列”.

(1)an2nbn3·2nnN+,数列{an}{bn}是否为“M类数列”?若是,指出它对应的实常数pq;若不是,请说明理由;

(2)求证:若数列{an}是“M类数列”,则数列{anan+1}也是“M类数列”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(1)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)证明:若数列{an}是“M类数列”,则数列{an+an+1}也是“M类数列”;
(3)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.求数列{an}前2009项的和.并判断{an}是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列{an}的相邻两项an、an+1,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:

5、对于给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(I)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?
若是,指出它对应的实常数p&,q,若不是,请说明理由;
(II)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.
(1)求数列{an}前2009项的和;
(2)是否存在实数t,使得数列{an}是“M类数列”,如果存在,求出t;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈R*都成立,我们称数列{cn}是“K类数列”.
(Ⅰ)若an=2n,bn=3•2n,n∈N*,数列{an},{bn}是否为“K类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(Ⅱ)证明:若数列{cn}是“K类数列”,则数列{an+an+1}也是“K类数列”;
(Ⅲ)若数列an满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.求数列{an}前2012项的和.并判断{an}是否为“K类数列”,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)对于给定数列{cn},如果存在实常数p、q,使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”;
(1)若an=2n,数列{an}是否为“M类数列”?若是,指出它对应的实常数p、q,若不是,请说明理由;
(2)数列{an}满足a1=2,an+an+1=3•2n(n∈N*),若数列{an}是“M类数列”,求数列{an}的通项公式;
(3)记数列{an}的前n项之和为Sn,求证:
4
S1S2
+
4
S2S3
+
4
S3S4
+…+
4
SnSn+1
19
42
(n≥3).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀柔区二模)对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“T数列”.
(Ⅰ)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“T数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(Ⅱ)证明:若数列{an}是“T数列”,则数列{an+an+1}也是“T数列”;
(Ⅲ)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.求数列{an}前2013项的和.

查看答案和解析>>

同步练习册答案