精英家教网 > 高中数学 > 题目详情
11.我国南宋时期的数学家秦九韶是普州(现四川省安岳县)人,秦九韶在其所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一例,则输出的S的值为(  )
A.4B.-5C.14D.-23

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
S=1,i=1
满足条件i≤4,执行循环体,S=-1,i=2
满足条件i≤4,执行循环体,S=4,i=3
满足条件i≤4,执行循环体,S=-5,i=4
满足条件i≤4,执行循环体,S=14,i=5
不满足条件i≤4,退出循环,输出S的值为14.
故选:C.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.某射手射击所得环数X的分布列如表,已知X的数学期望E(X)=8.9,则y的值为(  )
 X 7 8 910 
 P x 0.1 0.3 y
A.0.8B.0.4C.0.6D.0.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过△ABC的重心G作直线MN,分别交边AB、AC于点M、N,若AB=$\sqrt{2}$,AC=$\sqrt{3}$BC,则当△ABC的面积最大时,四边形MNCB面积的最大值为(  )
A.$\frac{5\sqrt{6}}{18}$B.$\frac{5\sqrt{6}}{9}$C.$\frac{5\sqrt{3}}{9}$D.$\frac{5\sqrt{3}}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一天晚上,小明在清洗两只颜色分别为红色和蓝色的有盖茶杯时,突然停电,杯盖和茶杯随机地搭配在一起,则“其颜色搭配一致”的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,}&{x≥0}\\{2{x}^{2}-5,}&{x<0}\end{array}\right.$编写一个程序,对每输入的一个x值,都得到相应的函数值,画出程序框图并编写相应的程序计算.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知p:函数f(x)=(x-a)2在(-∞,1)上是减函数,$q:?x>0,a≤\frac{{{x^2}+1}}{x}$恒成立,则?p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,矩形ABCD为本市沿海的一块滩涂湿地,其中阴影区域有丹顶鹤活动,曲线AC是以AD所在直线为对称轴的抛物线的一部分,其中AB=1km,BC=2km,现准备开发一个面积为0.6km2的湿地公园,要求不能破坏丹顶鹤活动区域.问:能否在AB边上取点E、在BC边上取点F,使得△BEF区域满足该项目的用地要求?若能,请给出点E、F的选址方案;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}前n项的和为Sn,满足a1=0,an≥0,3an+12=an2+an+1(n∈N*)
(Ⅰ)用数学归纳法证明:1$-\frac{1}{n}$≤an<1(n∈N*)
(Ⅱ)求证:an<an+1(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y∈R,且3x+9y=2,则x+2y的最大值是0.

查看答案和解析>>

同步练习册答案