精英家教网 > 高中数学 > 题目详情
1.若x,y∈R,且3x+9y=2,则x+2y的最大值是0.

分析 根据基本不等式和指数幂的运算性质即可求出.

解答 解:∵3x+9y=2,
∴2=3x+9y≥2$\sqrt{{3}^{x}{9}^{y}}$=2$\sqrt{{3}^{x+2y}}$,当且仅当x=0,y=0时取等号,
∴3x+2y≤1=30
∴x+2y≤0,
∴则x+2y的最大值是0,
故答案为:0

点评 利用基本不等式求函数的最值时,一定要注意不等式使用的条件:一正、二定、三相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.我国南宋时期的数学家秦九韶是普州(现四川省安岳县)人,秦九韶在其所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一例,则输出的S的值为(  )
A.4B.-5C.14D.-23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.不等式x2>0的解集为(  )
A.{x|x>0}B.{x|x<0}C.{x|x≠0}D.{x|x∈R}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,过其左焦点F作斜率为$\frac{1}{2}$的直线与双曲线的两条渐近线的交点分别为A、B,若$\overrightarrow{FA}=\frac{1}{2}\overrightarrow{AB}$,则双曲线的两条渐近线方程为(  )
A.$y=±\frac{1}{3}x$B.$y=±(\sqrt{2}-1)x$C.y=±xD.$y=±\frac{1}{4}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知($\root{3}{{x}^{2}}$+3x2n的展开式中,各项系数的和与其各项二项式系数的和之比为32.
(1)求n;
(2)求展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在复数集C={a+bi|a,b∈R}中的两个数2+bi与a-3i相等,则实数a,b的值分别为(  )
A.2,3B.2,-3C.-2,3D.-2,-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中的真命题是(  )
A.命题“垂直于同一个平面的两个平面平行”的逆否命题
B.若a<b,则|a|<|b|
C.命题“若x>1,且y>1,则x+y>2”的否命题
D.?x∈(0,$\frac{π}{2}$),sinx<x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在平行四边形ABCD中,E为BD上一点,且$\overrightarrow{BE}$=2$\overrightarrow{ED}$.
(1)试用向量$\overrightarrow{AB}$,$\overrightarrow{AD}$表示向量$\overrightarrow{EA}$,$\overrightarrow{EC}$;
(2)若$\overrightarrow{AB}$•$\overrightarrow{AD}$=1,AD=1,AB=$\sqrt{3}$,求$\overrightarrow{EA}$•$\overrightarrow{EC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数y=2x3+1与y=3x2-b的图象在一个公共点P(x0,y0)(x0>0)处的切线相同,则实数b=0.

查看答案和解析>>

同步练习册答案